
Section 2

Memory, pointers, and references

Presentation by Asem Alaa

SBE201 Data Structures and Algorithms (Spring 2020) - By Asem Alaa

1 / 24

Memory Layout

2 / 24

Memory Layout

2 / 24

Variables on Stack Memory

3 / 24

Variables on Stack Memory

The following variables are allocated on the stack

char x = 's';

float pi = 3.1415;

int k = 0;

int j = k;

double e {2.71828};

3 / 24

Variables on Stack Memory

The following variables are allocated on the stack

char x = 's';

float pi = 3.1415;

int k = 0;

int j = k;

double e {2.71828};

Automatically deleted after going out of their scope.

3 / 24

Variables on Stack Memory

The following variables are allocated on the stack

char x = 's';

float pi = 3.1415;

int k = 0;

int j = k;

double e {2.71828};

Automatically deleted after going out of their scope.

Very simple.

3 / 24

Address of a Variable in the Memory

Variables exist in memory.

A variable in memory has an address.

4 / 24

// Declare integer x and initialize it with 13.

int x = 13;

// Declare integer y and initialize it with 1.

int y = 1;

// Declare integer z and initialize it with 5.

int z = 5;

Their physical presence in memory looks like this:

5 / 24

Address of a variable in C++

6 / 24

Address of a variable in C++

But how to get (retrieve) the address of a variable in C++?

6 / 24

Address of a variable in C++

But how to get (retrieve) the address of a variable in C++?

By using & (ampersand operator).

6 / 24

Address of a variable in C++

But how to get (retrieve) the address of a variable in C++?

By using & (ampersand operator).

int x = 5;

std::cout << &x << "\n";

// Prints: the location of x in memory

6 / 24

Pointers

7 / 24

Pointers

We store the address of a variable in a special type called pointer.

Pointer is a primitive data type.

Pointer type occupies 8 bytes (64-bit machines).

Pointer is declared using the syntax: int * for pointer to

integer, double * for pointer to doubles, ...etc.

7 / 24

Pointers

We store the address of a variable in a special type called pointer.

Pointer is a primitive data type.

Pointer type occupies 8 bytes (64-bit machines).

Pointer is declared using the syntax: int * for pointer to

integer, double * for pointer to doubles, ...etc.

int x = 13;

int y = 1;

int z = 5;

// Declare 'pointer to integer' px and

// initialize with address of x.

int *px = &x;

// Declare 'pointer to integer' py and

// initialize with address of y.

int *py = &y;

// Declare 'pointer to integer' pz and

// initialize with address of z.

int *pz = &z;

Primitive Data Types in C++ (Revisited)

Primitive Data Types (PDT) in C++

bool: holds logical value, occupies 1 byte of memory.

char: a character, occupies 1 byte of memory.

int: an integer, occupies 4 bytes of memory.

float: a real-number-like, occupies 4 bytes of memory.

double: like float, but higher precision, occupies 8 bytes of

memory.

8 / 24

Primitive Data Types in C++ (Revisited)

Primitive Data Types (PDT) in C++

bool: holds logical value, occupies 1 byte of memory.

char: a character, occupies 1 byte of memory.

int: an integer, occupies 4 bytes of memory.

float: a real-number-like, occupies 4 bytes of memory.

double: like float, but higher precision, occupies 8 bytes of

memory.

pointer: holds the location of a variable in memory, occupies 8

bytes of memory.

8 / 24

Why using Address?

9 / 24

Why using Address?

Flexibility

Addresses gives a great flexibility to control variables. For example,

you can modify a variable value if you have its address.

 int x = 9;

 std::cout << x << std::endl; // prints: 9

 int *px = &x ;

 // Derefrencing px to access x.

 *px = 13;

 std::cout << x << std::endl; // prints 13

9 / 24

Passing arguments by pointer

10 / 24

Passing arguments by pointer

You can pass a pointer to variable as argument to a function.

10 / 24

Passing arguments by pointer

You can pass a pointer to variable as argument to a function.

void max(double a , double b , double *presults)

{

 // Dereference the presults to access the underlying variable.

 if(a > b) *presults = a;

 else *presults = b;

}

int main()

{

 double results = 0; double x = 0; double y = 0;

 std::cin >> x >> y;

 max(x , y , &results); // Now results has new value.

 std::cout << results << "\n";

}

10 / 24

Passing arguments by pointer

You can pass a pointer to variable as argument to a function.

void max(double a , double b , double *presults)

{

 // Dereference the presults to access the underlying variable.

 if(a > b) *presults = a;

 else *presults = b;

}

int main()

{

 double results = 0, x = 0, y = 0;

 std::cin >> x >> y;

 max(x , y , &results); // Now results has new value.

 std::cout << results << "\n";

}

11 / 24

Passing arguments by pointer

You can pass a pointer to variable as argument to a function.

void max(double a , double b , double *presults)

{

 // Dereference the presults to access the underlying variable.

 if(a > b) *presults = a;

 else *presults = b;

}

int main()

{

 double results = 0, x = 0, y = 0;

 std::cin >> x >> y;

 max(x , y , &results); // Now results has new value.

 std::cout << results << "\n";

}

this style acceptable in C language.

not preferred in C++, and always prefer to return the results.

11 / 24

Cont'd

Which is better?

This?

void max(double a , double b , double *presults)

{

 if(a > b) *presults = a;

 else *presults = b;

}

int main()

{

 double results = 0, x = 0; y = 0;

 std::cin >> x >> y;

 max(x , y , &results);

 std::cout << results << "\n";

}

12 / 24

Cont'd

Which is better?

Or this?

double max(double a , double b)

{

 if(a > b) return a;

 else return b;

}

int main()

{

 double x = 0; y = 0;

 std::cin >> x >> y;

 double results = max(x , y);

 std::cout << results << "\n";

}

13 / 24

Stack Memory vs. Heap Memory

Stack Memory Heap Memory

Limited capacity
Large capacity for scalable

structures

Automatic memory

management
Manual memory management

14 / 24

Variables on Heap Memory

Variables can also be created on heap.

// Allocate integer with initializing to zero

// on heap memory, and save the address in px.

int *px = new int{0};

// Allocate integer with initializing to 4

// on heap memory, and save the address in py.

int *py = new int(4);

int *pz = new int(8);

Physically, they would look like this:

Memory Management

16 / 24

Memory Management

Variables created on heap memory (using new operator), should

be deleted manually when they are no longer used.

Otherwise, you will allocate a lot of space that will become

unusable.

16 / 24

Memory Management

Variables created on heap memory (using new operator), should

be deleted manually when they are no longer used.

Otherwise, you will allocate a lot of space that will become

unusable.

int *px = new int{0};

int *py = new int(4);

int *pz = new int(8);

16 / 24

Memory Management

Variables created on heap memory (using new operator), should

be deleted manually when they are no longer used.

Otherwise, you will allocate a lot of space that will become

unusable.

int *px = new int{0};

int *py = new int(4);

int *pz = new int(8);

After making some prcessing on px, py, and pz

delete px;

delete py;

delete pz;

16 / 24

Important rule for memory management

17 / 24

Important rule for memory management

To avoid memory leaks, make sure that

allocations/deallocations are balanced in the en.

17 / 24

Important rule for memory management

To avoid memory leaks, make sure that

allocations/deallocations are balanced in the en.

new = # delete.

17 / 24

Reference types

18 / 24

Reference types

Very important type in C++,

18 / 24

Reference types

Very important type in C++,

Using it in the right way makes your program very efficient.

18 / 24

Reference types

Very important type in C++,

Using it in the right way makes your program very efficient.

References are alternative for pointers to enhance the

readability of your code.

18 / 24

Reference types

Very important type in C++,

Using it in the right way makes your program very efficient.

References are alternative for pointers to enhance the

readability of your code.

When you make a reference to a variable, you actually making

an alias to that variable.

18 / 24

Reference types

Very important type in C++,

Using it in the right way makes your program very efficient.

References are alternative for pointers to enhance the

readability of your code.

When you make a reference to a variable, you actually making

an alias to that variable.

In other words, you are making another name for the same

variable.

18 / 24

Primitive Data Types in C++ (Revisited 2)

Primitive Data Types (PDT) in C++

bool: holds logical value, occupies 1 byte of memory.

char: a character, occupies 1 byte of memory.

int: an integer, occupies 4 bytes of memory.

float: a real-number-like, occupies 4 bytes of memory.

double: like float, but higher precision, occupies 8 bytes of

memory.

19 / 24

Primitive Data Types in C++ (Revisited 2)

Primitive Data Types (PDT) in C++

bool: holds logical value, occupies 1 byte of memory.

char: a character, occupies 1 byte of memory.

int: an integer, occupies 4 bytes of memory.

float: a real-number-like, occupies 4 bytes of memory.

double: like float, but higher precision, occupies 8 bytes of

memory.

pointer: holds the location of a variable in memory, occupies 8

bytes of memory.

19 / 24

Primitive Data Types in C++ (Revisited 2)

Primitive Data Types (PDT) in C++

bool: holds logical value, occupies 1 byte of memory.

char: a character, occupies 1 byte of memory.

int: an integer, occupies 4 bytes of memory.

float: a real-number-like, occupies 4 bytes of memory.

double: like float, but higher precision, occupies 8 bytes of

memory.

pointer: holds the location of a variable in memory, occupies 8

bytes of memory.

reference: an alias to an existing variable, occupies 8 bytes of

memory.

19 / 24

References in C++

20 / 24

References in C++

// Declaration of integer x and initializing with zero.

int x = 0;

// Declaration of reference y and to be reference for x.

int &y = x;

// Now x and y, are the same variable, but with different name.

// Chaning y value, will also affect x, and vice versa.

y = 10;

std::cout << x << "\n"; // prints: 10

20 / 24

Cont'd

Recall the example of passing pointer as argument:

void max(double a , double b , double *presults)

{

 if(a > b) *presults = a;

 else *presults = b;

}

int main()

{

 double results = 0, x = 0, y = 0;

 std::cin >> x >> y;

 max(x , y , &results);

 std::cout << results << "\n";

}

21 / 24

This can be written in more elegant way using references:

void max(double a , double b , double &results)

{

 // No need for dereference as we did in pointers, like it is a real v

 if(a > b) results = a;

 else results = b;

}

int main()

{

 double results = 0;

 // No need to pass the address explicitly.

 max(13 , 5 , results);

 std::cout << results << "\n";

}

22 / 24

Rule: Keep it simple, stupid (KISS)

More about {KISS} principle.

But again, it is very preferred to use the simplest form

when possible!

double max(double a , double b)

{

 return (a > b)? a : b;

}

int main()

{

 double results = max(13 , 5);

}

We used pointer and references in previous examples just for

explanations!

23 / 24

https://en.wikipedia.org/wiki/KISS_principle

Thank you

SBE201 Data Structures and Algorithms (Spring 2020) - By Asem Alaa

24 / 24

