
Information about TA

SBE201 Data Structures and Algorithms (Spring 2020) - By Asem Alaa

1 / 94

Information about TA

Asem Alaa

SBE201 Data Structures and Algorithms (Spring 2020) - By Asem Alaa

1 / 94

Information about TA

Asem Alaa

e-mail: asem.a.abdelaziz@gmail.com

SBE201 Data Structures and Algorithms (Spring 2020) - By Asem Alaa

1 / 94

Information about TA

Asem Alaa

e-mail: asem.a.abdelaziz@gmail.com

Office hours and course materials are available on the course

page:

{sbme-tutorials.github.io/2020/data-structures}

SBE201 Data Structures and Algorithms (Spring 2020) - By Asem Alaa

1 / 94

https://sbme-tutorials.github.io/2020/data-structures

Information about TA

Asem Alaa

e-mail: asem.a.abdelaziz@gmail.com

Office hours and course materials are available on the course

page:

{sbme-tutorials.github.io/2020/data-structures}

Main research interests: Bioinformatics Algorithms and

Machine Learning

SBE201 Data Structures and Algorithms (Spring 2020) - By Asem Alaa

1 / 94

https://sbme-tutorials.github.io/2020/data-structures

Information about our course

2 / 94

Information about our course

Aims to understanding various data structures by

implementation from scratch.

2 / 94

Information about our course

Aims to understanding various data structures by

implementation from scratch.

Understanding algorithms by implementation from scratch.

2 / 94

Information about our course

Aims to understanding various data structures by

implementation from scratch.

Understanding algorithms by implementation from scratch.

Modern C++ is used to build our data structures and

algorithms. —"What I cannot create I don't understand. R.F"—

2 / 94

Information about our course

Aims to understanding various data structures by

implementation from scratch.

Understanding algorithms by implementation from scratch.

Modern C++ is used to build our data structures and

algorithms. —"What I cannot create I don't understand. R.F"—

2 / 94

Information about our course (cont'd)

3 / 94

Information about our course (cont'd)

This course doesn't aim to teach OOP nor design patterns.

(Though, I recommend learning these topics after this course).

3 / 94

Information about our course (cont'd)

This course doesn't aim to teach OOP nor design patterns.

(Though, I recommend learning these topics after this course).

We still aim to write a very clean and simple C++ code.

3 / 94

Information about our course (cont'd)

This course doesn't aim to teach OOP nor design patterns.

(Though, I recommend learning these topics after this course).

We still aim to write a very clean and simple C++ code.

We will also learn and practice on version control systems like

git.

3 / 94

Information about our course (cont'd)

This course doesn't aim to teach OOP nor design patterns.

(Though, I recommend learning these topics after this course).

We still aim to write a very clean and simple C++ code.

We will also learn and practice on version control systems like

git.

We will learn about different topics and tools in the

development ecosystem.

3 / 94

Information about our course (cont'd)

This course doesn't aim to teach OOP nor design patterns.

(Though, I recommend learning these topics after this course).

We still aim to write a very clean and simple C++ code.

We will also learn and practice on version control systems like

git.

We will learn about different topics and tools in the

development ecosystem.

Implementation assignment each week.

3 / 94

Attendance

Attendance is a requirement to pass the courses.

4 / 94

Attendance

Attendance is a requirement to pass the courses.

Not showing in more than 25% of lectures or tutorials is

penalized by failing in the course.

4 / 94

Cheating and Academic Dishonesty

5 / 94

Cheating and Academic Dishonesty

Be it in exams or assignments

Violating other rights and affects honest students as well.

5 / 94

Cheating and Academic Dishonesty

Be it in exams or assignments

Violating other rights and affects honest students as well.

Usually correlated with other corrupted personal values.

5 / 94

Cheating and Academic Dishonesty

Be it in exams or assignments

Violating other rights and affects honest students as well.

Usually correlated with other corrupted personal values.

Forbidden by the religions' laws.

5 / 94

Recommended Resources

Data structure and Algorithms

6 / 94

Recommended Resources

Data structure and Algorithms

Introduction to Algorithms

by Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, Clifford Stein.

6 / 94

https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844

Recommended Resources

Data structure and Algorithms

Introduction to Algorithms

by Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, Clifford Stein.

Algorithms

by Sanjoy Dasgupta, Christos H. Papadimitriou,

Umesh Vazirani.

6 / 94

https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844
https://www.amazon.com/Algorithms-Sanjoy-Dasgupta/dp/0073523402

Recommended Resources

Data structure and Algorithms

Introduction to Algorithms

by Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, Clifford Stein.

Algorithms

by Sanjoy Dasgupta, Christos H. Papadimitriou,

Umesh Vazirani.

Online course: Data Structures

by Offered By University of California San Diego

and National Research University Higher School

of Economics.

6 / 94

https://www.amazon.com/Introduction-Algorithms-3rd-MIT-Press/dp/0262033844
https://www.amazon.com/Algorithms-Sanjoy-Dasgupta/dp/0073523402
https://www.coursera.org/learn/data-structures

Recommended Resources

C++ Programming

7 / 94

Recommended Resources

C++ Programming

Online course: C++ Fundamentals Including

C++ 17

5h 48m long course, by Kate Gregory.

7 / 94

https://www.pluralsight.com/courses/cplusplus-fundamentals-c17

Recommended Resources

C++ Programming

Online course: C++ Fundamentals Including

C++ 17

5h 48m long course, by Kate Gregory.

Documentation: C++ Standard Documentation

by C++ committee.

7 / 94

https://www.pluralsight.com/courses/cplusplus-fundamentals-c17
https://en.cppreference.com/w/

Recommended Resources

C++ Programming (cont'd)

8 / 94

Recommended Resources

C++ Programming (cont'd)

Textbook: Principles and Practice Using C++

including more than 100 pages of exercises, by

Bjarne Stroustrup.

8 / 94

http://stroustrup.com/programming.html

Recommended Resources

C++ Programming (cont'd)

Textbook: Principles and Practice Using C++

including more than 100 pages of exercises, by

Bjarne Stroustrup.

Textbook: C++ Primer

by Stanley B. Lippman, Josée Lajoie, Barbara E.

Moo.

8 / 94

http://stroustrup.com/programming.html
https://www.amazon.com/Primer-5th-Edition-Stanley-Lippman/dp/0321714113

The very C++ basics

Creating variables.

Arithmetic Operations.

If, else if, else.

while-for-switch-case.

functions

namespace

9 / 94

Introduction

10 / 94

Introduction

A Simple Calculator Program and Memory

Model

Programs are all about playing with variables and groups of

variables (structures)

10 / 94

C++

11 / 94

C++

Bjarne Stroustrup created C++.

C++ first appeared in 1985 (35 years ago).

11 / 94

What we can build using C++

Self-driving cars

Games

PDE solvers

Banking software

Animation software

Financial software

Search engines

Navigation software

Social networking

12 / 94

What we can build using C++

Elon Musk
@elonmusk

Our NN is initially in Python for rapid iteration, then
converted to C++/C/raw metal driver code for speed
(important!). Also, tons of C++/C engineers needed for
vehicle control & entire rest of car. Educational background
is irrelevant, but all must pass hardcore coding test.

19.9K 6:07 AM - Feb 3, 2020

2,996 people are talking about this

Elon Musk @elonmusk · Feb 2, 2020
Replying to @elonmusk
We are (obviously) also looking for world-class chip designers
to join our team, based in both Palo Alto & Austin

13 / 94

https://twitter.com/elonmusk
https://twitter.com/elonmusk
https://twitter.com/intent/like?tweet_id=1224182478501482497
https://twitter.com/elonmusk/status/1224182478501482497
https://support.twitter.com/articles/20175256
https://twitter.com/elonmusk/status/1224182478501482497
https://twitter.com/elonmusk
https://twitter.com/elonmusk
https://twitter.com/elonmusk/status/1224050718107209730
https://twitter.com/elonmusk/status/1224050718107209730
https://twitter.com/_/status/1224050025564725248

Variables in C++

Primitive Data Types (PDT) in C++

bool: holds logical value (i.e true or false), occupies 1 byte of

memory.

14 / 94

Variables in C++

Primitive Data Types (PDT) in C++

bool: holds logical value (i.e true or false), occupies 1 byte of

memory.

char: a character (e.g 'a','b',..), occupies 1 byte of memory.

14 / 94

Variables in C++

Primitive Data Types (PDT) in C++

bool: holds logical value (i.e true or false), occupies 1 byte of

memory.

char: a character (e.g 'a','b',..), occupies 1 byte of memory.

int: an integer (e.g ...,-1,0,1,2,..), occupies 4 bytes of memory.

14 / 94

Variables in C++ (cont'd)

std::string: a text (e.g "Mostafa", "ACCTTG", etc.), occupies

variable size im memory.

15 / 94

Variables in C++ (cont'd)

std::string: a text (e.g "Mostafa", "ACCTTG", etc.), occupies

variable size im memory.

float: a real-number-like (e.g 0.5, 3.141, 9.81), occupies 4

bytes of memory.

15 / 94

Variables in C++ (cont'd)

std::string: a text (e.g "Mostafa", "ACCTTG", etc.), occupies

variable size im memory.

float: a real-number-like (e.g 0.5, 3.141, 9.81), occupies 4

bytes of memory.

double: like float, but higher precision, occupies 8 bytes of

memory.

15 / 94

Variables in C++ (cont'd)

std::string: a text (e.g "Mostafa", "ACCTTG", etc.), occupies

variable size im memory.

float: a real-number-like (e.g 0.5, 3.141, 9.81), occupies 4

bytes of memory.

double: like float, but higher precision, occupies 8 bytes of

memory.

Double vs float

 equals:

3.1415926535897932384626433832795028841971693993751

0582097494459230781640628620899

π

15 / 94

Variables in C++ (cont'd)

std::string: a text (e.g "Mostafa", "ACCTTG", etc.), occupies

variable size im memory.

float: a real-number-like (e.g 0.5, 3.141, 9.81), occupies 4

bytes of memory.

double: like float, but higher precision, occupies 8 bytes of

memory.

Double vs float

 equals:

3.1415926535897932384626433832795028841971693993751

0582097494459230781640628620899

 in float variable: 3.1415927.

π

π

15 / 94

Variables in C++ (cont'd)

std::string: a text (e.g "Mostafa", "ACCTTG", etc.), occupies

variable size im memory.

float: a real-number-like (e.g 0.5, 3.141, 9.81), occupies 4

bytes of memory.

double: like float, but higher precision, occupies 8 bytes of

memory.

Double vs float

 equals:

3.1415926535897932384626433832795028841971693993751

0582097494459230781640628620899

 in float variable: 3.1415927.

 in double variable: 3.1415926535897931.

π

π

π

15 / 94

Variables in C++

16 / 94

Variables in C++

std::vector: collections.

16 / 94

Variables in C++

std::vector: collections.

enum class: finite sets.

16 / 94

Variables in C++

std::vector: collections.

enum class: finite sets.

pointer: next week.

16 / 94

Variables in C++

std::vector: collections.

enum class: finite sets.

pointer: next week.

reference: next week.

16 / 94

Construction of Variables

17 / 94

Construction of Variables

A variable basically has:

17 / 94

Construction of Variables

A variable basically has:

1. Data Type: int, char, bool, ..., etc.

17 / 94

Construction of Variables

A variable basically has:

1. Data Type: int, char, bool, ..., etc.

2. Name: name of the variable to be used throughout your code.

17 / 94

Construction of Variables

A variable basically has:

1. Data Type: int, char, bool, ..., etc.

2. Name: name of the variable to be used throughout your code.

3. Value: the content of the variable.

17 / 94

Construction of Variables

A variable basically has:

1. Data Type: int, char, bool, ..., etc.

2. Name: name of the variable to be used throughout your code.

3. Value: the content of the variable.

Don't mix between them!

17 / 94

So, to construct a variable you need to:

18 / 94

So, to construct a variable you need to:

1. Declare a variable (Compiler Requirement).

Indicate your variable type.

Indicate your variable name that your are going

to refer later.

18 / 94

So, to construct a variable you need to:

1. Declare a variable (Compiler Requirement).

Indicate your variable type.

Indicate your variable name that your are going

to refer later.

2. Initialize that variable (to survive undefined behaviour).

Give it an initial value.

18 / 94

Example: constructing variables

19 / 94

Example: constructing variables

First of all:

Comments in C++ code.

19 / 94

Example: constructing variables

First of all:

Comments in C++ code.

// What comes after double forward-slash (//) in a line is a comment.

// Compiler Ignores comments.

// Comments are not contributing to your application logic.

// Comments are message to the readers of your code.

19 / 94

Cont'd

20 / 94

Cont'd

// Declare a character variable.

// Variable names are not the actual value!

char x;

// What is the value of x?!

// When not initialized, x will hold a value from garbage.

// Please, always initialize your variables.

// Declaration of character with initializng to 's'.

char x = 's';

// Declaration of float whith initializing to 3.1415.

float pi = 3.1415;

20 / 94

Cont'd

21 / 94

Cont'd

// If no interesting value to initialize

// your variable with, initialize with 0.

int k = 0;

// You can initialize a variable with the value of

// another variable.

int j = k;

// Another way to initialize a variable is

// using braces, it is up to you.

double e {2.71828};

21 / 94

Cont'd

// If no interesting value to initialize

// your variable with, initialize with 0.

int k = 0;

// You can initialize a variable with the value of

// another variable.

int j = k;

// Another way to initialize a variable is

// using braces, it is up to you.

double e {2.71828};

One way to avoid bugs (undefined behaviour) is initializing your

variables.

21 / 94

Cont'd

// If no interesting value to initialize

// your variable with, initialize with 0.

int k = 0;

// You can initialize a variable with the value of

// another variable.

int j = k;

// Another way to initialize a variable is

// using braces, it is up to you.

double e {2.71828};

One way to avoid bugs (undefined behaviour) is initializing your

variables.

Any Questions?

21 / 94

Overview on data structures

22 / 94

Collections of Variables (Data Structures)

A data structure is a particular way of organizing data so they can

be used efficiently by some task.

Example 1: Data Structures in Biomedical Informatics

23 / 94

Collections of Variables (Data Structures)

A data structure is a particular way of organizing data so they can

be used efficiently by some task.

Example 1: Data Structures in Biomedical Informatics

Application: analysis of ECG of the heart.

23 / 94

Example 1: Data Structures in Biomedical Informatics

(cont'd)

24 / 94

Example 1: Data Structures in Biomedical Informatics

(cont'd)

Sampled Signal = [12.3, 12.7, 14.5, 18.0, 16.2, 10.1, 8.6, . . .]

24 / 94

Example 1: Data Structures in Biomedical Informatics

(cont'd)

It is pointless to construct a variable for each sample!

Sampled Signal = [12.3, 12.7, 14.5, 18.0, 16.2, 10.1, 8.6, . . .]

24 / 94

Example 1: Data Structures in Biomedical Informatics

(cont'd)

It is pointless to construct a variable for each sample!

double s1 = 12.3;

double s2 = 12.7;

.

.

double s256 = -0.5;

Sampled Signal = [12.3, 12.7, 14.5, 18.0, 16.2, 10.1, 8.6, . . .]

24 / 94

Example 1: Data Structures in Biomedical Informatics

(cont'd)

It is pointless to construct a variable for each sample!

double s1 = 12.3;

double s2 = 12.7;

.

.

double s256 = -0.5;

Instead we need to store all values and use a single name for them.

Sampled Signal = [12.3, 12.7, 14.5, 18.0, 16.2, 10.1, 8.6, . . .]

24 / 94

Example 2: Data Structures in Biomedical Informatics

Input:

txt = "AACAAGAATAACAACA"

pattern = "AACA"

25 / 94

Example 2: Data Structures in Biomedical Informatics

Input:

txt = "AACAAGAATAACAACA"

pattern = "AACA"

Output: "AACAAGAATAACAACA"

Pattern found at index 0,9,12

25 / 94

Example 2: Data Structures in Biomedical Informatics

Input:

txt = "AACAAGAATAACAACA"

pattern = "AACA"

Output: "AACAAGAATAACAACA"

Pattern found at index 0,9,12

Assume that we have:

txt of size

pattern of size

n = 10, 000, 000

m = 12

25 / 94

Example 2: Data Structures in Biomedical Informatics

Input:

txt = "AACAAGAATAACAACA"

pattern = "AACA"

Output: "AACAAGAATAACAACA"

Pattern found at index 0,9,12

Assume that we have:

txt of size

pattern of size

No. of comparisons/steps

n = 10, 000, 000

m = 12

≈ m × n = 120, 000, 000

25 / 94

Example 2: Data Structures in Biomedical Informatics

Input:

txt = "AACAAGAATAACAACA"

pattern = "AACA"

Output: "AACAAGAATAACAACA"

Pattern found at index 0,9,12

Assume that we have:

txt of size

pattern of size

No. of comparisons/steps

Can we do it in only 12 step!!

n = 10, 000, 000

m = 12

≈ m × n = 120, 000, 000

≈

25 / 94

Example 2: Data Structures in Biomedical Informatics

Input:

txt = "AACAAGAATAACAACA"

pattern = "AACA"

Output: "AACAAGAATAACAACA"

Pattern found at index 0,9,12

Assume that we have:

txt of size

pattern of size

No. of comparisons/steps

Can we do it in only 12 step!!

Yes! but using special data structure like suffix trees.

n = 10, 000, 000

m = 12

≈ m × n = 120, 000, 000

≈

25 / 94

Data structures and basic algorithms on them

26 / 94

Data structures and basic algorithms on them

Mainly these what we are going to study through this course:

26 / 94

Data structures and basic algorithms on them

Mainly these what we are going to study through this course:

Different data structures (i.e collections of elements): Array,

Linked List, Stack, Queue, Tree.

26 / 94

Data structures and basic algorithms on them

Mainly these what we are going to study through this course:

Different data structures (i.e collections of elements): Array,

Linked List, Stack, Queue, Tree.

How to construct collections.

26 / 94

Data structures and basic algorithms on them

Mainly these what we are going to study through this course:

Different data structures (i.e collections of elements): Array,

Linked List, Stack, Queue, Tree.

How to construct collections.

How to insert elements to our collection.

26 / 94

Data structures and basic algorithms on them

Mainly these what we are going to study through this course:

Different data structures (i.e collections of elements): Array,

Linked List, Stack, Queue, Tree.

How to construct collections.

How to insert elements to our collection.

How to modify element in our collection.

26 / 94

Data structures and basic algorithms on them

Mainly these what we are going to study through this course:

Different data structures (i.e collections of elements): Array,

Linked List, Stack, Queue, Tree.

How to construct collections.

How to insert elements to our collection.

How to modify element in our collection.

How to delete an element.

26 / 94

Data structures and basic algorithms on them

Mainly these what we are going to study through this course:

Different data structures (i.e collections of elements): Array,

Linked List, Stack, Queue, Tree.

How to construct collections.

How to insert elements to our collection.

How to modify element in our collection.

How to delete an element.

How to traverse our collection (i.e print all its elements).

26 / 94

Data structures and basic algorithms on them

Mainly these what we are going to study through this course:

Different data structures (i.e collections of elements): Array,

Linked List, Stack, Queue, Tree.

How to construct collections.

How to insert elements to our collection.

How to modify element in our collection.

How to delete an element.

How to traverse our collection (i.e print all its elements).

Applying algorithms on our collection.

26 / 94

Data structures and basic algorithms on them

Mainly these what we are going to study through this course:

Different data structures (i.e collections of elements): Array,

Linked List, Stack, Queue, Tree.

How to construct collections.

How to insert elements to our collection.

How to modify element in our collection.

How to delete an element.

How to traverse our collection (i.e print all its elements).

Applying algorithms on our collection.

Searching for an element in our collection.

26 / 94

Back to C++

27 / 94

Basic Operations on Primitive Data Types

(PDT)

28 / 94

Basic Operations on Primitive Data Types

(PDT)

A) Arithmetic Operations.

28 / 94

Basic Operations on Primitive Data Types

(PDT)

A) Arithmetic Operations.

int x = 12;

int y = 5;

x + y; // 17

x - y; // 7

x * y; // 60

x / y; // 2

x % y; // 2

28 / 94

Cont'd

29 / 94

Cont'd

// x = x+y

x += y; // x is now 17.

// increment: x = x+1

++x; // x is now 18.

// x = x-y

x -= y; // x is now 13.

// decrement: x = x-1

--x; // x is now 12.

double u = 12.5;

double v { 3 };

u / v; // 4.166667

29 / 94

Cont'd

30 / 94

Cont'd

B) Logical Operations

30 / 94

Cont'd

B) Logical Operations

int x = 3;

int y = 4;

// equal

x==y; // False

// not equal

x!=y; // True

// less than

x<y; // True

// greater than

x>y; // False

30 / 94

Cont'd

31 / 94

Cont'd

// less than or equal

x<=y; // True

// greater than or equal

x>=y; // False

// logical and

x == 3 && y > x; // True

x != 3 && y > x; // False

true && true; // True

5 < 10 && 13 >= 11; // True

5 % 2 == 1 && 3 / 2 > 1; // False

5 % 2 == 1 && 3 / 2.0 > 1; // True

31 / 94

Cont'd

// less than or equal

x<=y; // True

// greater than or equal

x>=y; // False

// logical and

x == 3 && y > x; // True

x != 3 && y > x; // False

true && true; // True

5 < 10 && 13 >= 11; // True

5 % 2 == 1 && 3 / 2 > 1; // False

5 % 2 == 1 && 3 / 2.0 > 1; // True

Note 1: expressions are more generic unit than variables.

31 / 94

Cont'd

// less than or equal

x<=y; // True

// greater than or equal

x>=y; // False

// logical and

x == 3 && y > x; // True

x != 3 && y > x; // False

true && true; // True

5 < 10 && 13 >= 11; // True

5 % 2 == 1 && 3 / 2 > 1; // False

5 % 2 == 1 && 3 / 2.0 > 1; // True

Note 1: expressions are more generic unit than variables.

Note 2: (expression % 2 == 1) is a way to test if that

expression is even or odd.

31 / 94

Cont'd

// logical or

true || true; // True

true || false; // True

false || true; // True

false || false; // False

5 % 2 == 1 || 3 / 2 > 1; // True

32 / 94

Basic Control Statements

33 / 94

Basic Control Statements

Conditions: if, else if, else, switch-case

bool myCondition = 5 % 2 == 1 || 3 / 2 > 1;

if(myCondition)

{

 // Some operations here.

}

else

{

 // Other operations here.

}

33 / 94

Cont'd

char base = 'A'; char complementary = 'T';

std::cin >> base;

if(base == 'A')

{

 complementary = 'T';

}

else if(base == 'C')

{ complementary = 'G'; }

else if(base == 'G')

 complementary = 'C';

else

 complementary = 'A';

std::cout << complementary << std::endl;

34 / 94

Cont'd

char base = 'A'; char complementary = 'T';

std::cin >> base;

switch (base)

{

 case 'A':

 complementary = 'T'; break;

 case 'C':

 complementary = 'G'; break;

 case 'G':

 complementary = 'C'; break;

 default:

 complementary = 'A'; break;

}

std::cout << complementary << std::endl;

35 / 94

Cont'd

char base = 'A'; char complementary = 'T';

std::cin >> base;

switch (base)

{

 case 'A':

 complementary = 'T'; break;

 case 'C':

 complementary = 'G'; break;

 case 'G':

 complementary = 'C'; break;

 default:

 complementary = 'A'; break;

}

std::cout << complementary << std::endl;

std::cout is used to print out object values to the terminal.

35 / 94

Cont'd

char base = 'A'; char complementary = 'T';

std::cin >> base;

switch (base)

{

 case 'A':

 complementary = 'T'; break;

 case 'C':

 complementary = 'G'; break;

 case 'G':

 complementary = 'C'; break;

 default:

 complementary = 'A'; break;

}

std::cout << complementary << std::endl;

std::cout is used to print out object values to the terminal.

What is std:: and what is cout?

35 / 94

Loops: for, while

for(int i = 0; i < 10; ++i)

{

 std::cout << i << " ";

}

// prints:0 1 2 3 4 5 6 7 8 9

int i = 0;

while(i < 10)

{

 std::cout << i << " ";

}

// prints:0 1 2 3 4 5 6 7 8 9

36 / 94

Loops: for, while

for(int i = 0; i < 10; ++i)

{

 std::cout << i << " ";

}

// prints:0 1 2 3 4 5 6 7 8 9

int i = 0;

while(i < 10)

{

 std::cout << i << " ";

}

// prints:0 1 2 3 4 5 6 7 8 9

Any bug?

36 / 94

Loops: for, while

for(int i = 0; i < 10; ++i)

{

 std::cout << i << " ";

}

// prints:0 1 2 3 4 5 6 7 8 9

int i = 0;

while(i < 10)

{

 std::cout << i << " ";

 ++i;

}

// prints:0 1 2 3 4 5 6 7 8 9

37 / 94

Functions

38 / 94

Functions

A function is a unit that you write some logic in it. So we can use

that logic many times through that function.

38 / 94

Functions

A function is a unit that you write some logic in it. So we can use

that logic many times through that function. A function basically

has:

38 / 94

Functions

A function is a unit that you write some logic in it. So we can use

that logic many times through that function. A function basically

has:

Name to be used when calling this function.

38 / 94

Functions

A function is a unit that you write some logic in it. So we can use

that logic many times through that function. A function basically

has:

Name to be used when calling this function.

Return Type: a function may return int, double, char, ... etc.

Also, it may not return, so its return type is void.

38 / 94

Functions

A function is a unit that you write some logic in it. So we can use

that logic many times through that function. A function basically

has:

Name to be used when calling this function.

Return Type: a function may return int, double, char, ... etc.

Also, it may not return, so its return type is void.

Arguments: the variables given to your function so it makes

some operations on.

38 / 94

Declaration and Definition of Functions

39 / 94

Declaration and Definition of Functions

Like variables, functions must be declared before you implement

your logic in this function.

39 / 94

Declaration and Definition of Functions

Like variables, functions must be declared before you implement

your logic in this function.

Declaration is a function header that indicates the function

name, return type, and arguments.

39 / 94

Declaration and Definition of Functions

Like variables, functions must be declared before you implement

your logic in this function.

Declaration is a function header that indicates the function

name, return type, and arguments.

Definition is the function logic.

39 / 94

Example

double average(double a , double b) // function header (Declaration)

{ // function definition (logic) goes here

 return (a + b) / 2;

}

double max(double a , double b) // declaration

{ // definition

 if(a > b)

 return a;

 else return b;

}

int main()

{

 // Define 'x' as double. Realize the type consistency.

 double x = average(13.5 , 21.0);

 bool y = average(11.5 , 15.0); // Compiler Error, type mismatch!

 std::cout << max(15.0 , 9.0) << std::endl; // prints: 15.0

}

40 / 94

Scopes and Lifetime

41 / 94

Scopes and Lifetime

Variables are bound to scopes where they are declared. Scopes

types:

41 / 94

Scopes and Lifetime

Variables are bound to scopes where they are declared. Scopes

types:

1. Local scope: any variable declared in a function is not

accessible outside that function.

41 / 94

Scopes and Lifetime

Variables are bound to scopes where they are declared. Scopes

types:

1. Local scope: any variable declared in a function is not

accessible outside that function.

2. Block: any variable declared inside braces {}, like the blocks of

the for, while, if, else if, else, and switch-case.

41 / 94

Scopes and Lifetime

Variables are bound to scopes where they are declared. Scopes

types:

1. Local scope: any variable declared in a function is not

accessible outside that function.

2. Block: any variable declared inside braces {}, like the blocks of

the for, while, if, else if, else, and switch-case.

3. Namespace scope.

41 / 94

Scopes and Lifetime

Variables are bound to scopes where they are declared. Scopes

types:

1. Local scope: any variable declared in a function is not

accessible outside that function.

2. Block: any variable declared inside braces {}, like the blocks of

the for, while, if, else if, else, and switch-case.

3. Namespace scope.

Once the scope is terminated, all variables in that scope are

destructed.

41 / 94

Scopes and Lifetime

Variables are bound to scopes where they are declared. Scopes

types:

1. Local scope: any variable declared in a function is not

accessible outside that function.

2. Block: any variable declared inside braces {}, like the blocks of

the for, while, if, else if, else, and switch-case.

3. Namespace scope.

Once the scope is terminated, all variables in that scope are

destructed.

Otherwise, if variable is declared outside all of the mentioned

scopes, then it is a global variable.

41 / 94

Scopes and Lifetime

Variables are bound to scopes where they are declared. Scopes

types:

1. Local scope: any variable declared in a function is not

accessible outside that function.

2. Block: any variable declared inside braces {}, like the blocks of

the for, while, if, else if, else, and switch-case.

3. Namespace scope.

Once the scope is terminated, all variables in that scope are

destructed.

Otherwise, if variable is declared outside all of the mentioned

scopes, then it is a global variable.

Global variables are accessible anywhere in the source file.

41 / 94

Example of a local scope and a block scope

double rectangleArea(double width , double height)

{

 // The arguments width and height are local variables to this function.

 // width, height, area are not accessible outside.

 double area = width * height;

 return area; // return by value

}

int main()

{

 // area here is completely different than area in the rectangleArea fun

 // They have the same value. But they are not same the variables.

 double area = rectangleArea(12.9 , 2.5);

}

42 / 94

Example of namespace scope

43 / 94

Example of namespace scope

Consider a situation when you need to implement a function that

computes the area of rectangle and the area of right triangle. Using

the same function name area!

43 / 94

Example of namespace scope

namespace rectangle

{

 double area(double width , double height)

 {

 return width * height;

 }

}

namespace triangle

{

 double area(double base , double height)

 {

 return (base * height) / 2;

 }

}

int main()

{

 double rectangleArea = rectangle::area(12.9 , 2.5);

 double triangleArea = triangle::area(4.0 , 3.0);

 std::cout << rectangleArea << std::endl << triangleArea << std::endl;

}

44 / 94

Example of namespace scope

int main()

{

 double rectangleArea = rectangle::area(12.9 , 2.5);

 double triangleArea = triangle::area(4.0 , 3.0);

 std::cout << rectangleArea << std::endl << triangleArea << std::endl;

}

45 / 94

Example of namespace scope

int main()

{

 double rectangleArea = rectangle::area(12.9 , 2.5);

 double triangleArea = triangle::area(4.0 , 3.0);

 std::cout << rectangleArea << std::endl << triangleArea << std::endl;

}

Now you have a little sense about std::cout and std

Namespace.

45 / 94

C++ Programs

C++ is a compiled language which means you need to install a

compiler in order to generate executable files for your application.

A typical process of executable file generation is shown in this

image:

46 / 94

Writing C++ codes

To write a C++ source code we will rely on Integrated

Development Environment (IDE).

47 / 94

Writing C++ codes

To write a C++ source code we will rely on Integrated

Development Environment (IDE).

Qt Creator for SBE201

{Installing and running Qt Creator IDE}

You will find in the link above instructions on:

1. Downloading the Qt project packages.

2. Installation.

3. Starting and writing your first program.

47 / 94

http://127.0.0.1:4000/2020/data-structures/notes/qt.html

Lightweight Alternative: Microsoft VSCode

A light IDE.

You can use to write Markdown files and simple C++ codes.

Download from: {Visual Studio Code}

48 / 94

https://code.visualstudio.com/

Lightweight Alternative: Microsoft VSCode

A light IDE.

You can use to write Markdown files and simple C++ codes.

Download from: {Visual Studio Code}

After downloading the .deb package file, open a terminal at the

directory where you downloaded the package file, then:

48 / 94

https://code.visualstudio.com/

Lightweight Alternative: Microsoft VSCode

A light IDE.

You can use to write Markdown files and simple C++ codes.

Download from: {Visual Studio Code}

After downloading the .deb package file, open a terminal at the

directory where you downloaded the package file, then:

sudo dpkg -i ./<package file="">

code

48 / 94

https://code.visualstudio.com/

Writing your first C++ application

Let's write our first source file. Copy the following code to your VS Code editor.

Save the file as firstApp4SBME.cpp.

#include <iostream>

namespace rectangle

{

 double area(double width , double height)

 {

 return width * height;

 }

}

namespace triangle

{

 double area(double base , double height)

 {

 return (base * height) / 2;

 }

}

int main()

{

 double rectangleArea = rectangle::area(12.9 , 2.5);

d bl t i l A t i l (4 0 3 0)

Compiling your code

50 / 94

Compiling your code

g++ -o firstAppSBME firstAppSBME.cpp

50 / 94

Compiling your code

g++ -o firstAppSBME firstAppSBME.cpp

CONGRATULATIONS! you have built your first application.

50 / 94

Execute the application

51 / 94

Execute the application

./firstAppSBME

51 / 94

Execute the application

./firstAppSBME

you should see:

32.25

6

51 / 94

Git

52 / 94

Git

Problem Definition

Imagine the case when Emad and Ahmed need to collaborate on

this project. Such that:

52 / 94

Problem Definition (cont'd)

1. Emad generates the biolerplate/skeleton (i.e the files and the

main function) of the project.

#include <iostream>

namespace rectangle

{

 // No implementation yet!

}

namespace triangle

{

 // No implmenetation yet!

}

int main()

{

 double rectangleArea = rectangle::area(12.9 , 2.5);

 double triangleArea = triangle::area(4.0 , 3.0);

 std::cout << "Rectangle area: " << rectangleArea << std::endl

 << "Triangle area: " << triangleArea << std::endl;

}

53 / 94

Problem Definition (cont'd)

54 / 94

Problem Definition (cont'd)

1. Ahmed has to implement the rectangle area function

A = wh

54 / 94

Problem Definition (cont'd)

1. Ahmed has to implement the rectangle area function

2. Emad has to implement the triangle area function

A = wh

A =
bh

2

54 / 94

Problem Definition (cont'd)

Possible Awful Solutions:

Ahmed finishes the whole project alone.

55 / 94

Problem Definition (cont'd)

Possible Awful Solutions:

Ahmed finishes the whole project alone.

Emad finishes the whole project alone.

55 / 94

Problem Definition (cont'd)

Possible Awful Solutions:

Ahmed finishes the whole project alone.

Emad finishes the whole project alone.

They share intermediate codes through messenger, e-mail, or

dropbox!

55 / 94

Problem Definition (cont'd)

Possible Awful Solutions:

Ahmed finishes the whole project alone.

Emad finishes the whole project alone.

They share intermediate codes through messenger, e-mail, or

dropbox!

They pass USB disk back and forth!

55 / 94

Problem Definition (cont'd)

Possible Awful Solutions:

Ahmed finishes the whole project alone.

Emad finishes the whole project alone.

They share intermediate codes through messenger, e-mail, or

dropbox!

They pass USB disk back and forth!

They sit together to finish the project!

55 / 94

Problem Definition (cont'd)

What if?!

56 / 94

Problem Definition (cont'd)

What if?!

What if we have a team of 8 members.

56 / 94

Problem Definition (cont'd)

What if?!

What if we have a team of 8 members.

What if your application was as big as 20000 lines of code

across tens of files.

56 / 94

Version Control Systems

57 / 94

Version Control Systems

Keep track of all the changes that happened (No lost work).

57 / 94

Version Control Systems

Keep track of all the changes that happened (No lost work).

Many Developers can work on the same file at the same time.

57 / 94

Version Control Systems

Keep track of all the changes that happened (No lost work).

Many Developers can work on the same file at the same time.

The Version Control System will handle conflicts if possible, if

not, it will ask the developers to check it.

57 / 94

Version Control Systems

Keep track of all the changes that happened (No lost work).

Many Developers can work on the same file at the same time.

The Version Control System will handle conflicts if possible, if

not, it will ask the developers to check it.

Popular Version Control Systems

57 / 94

Version Control Systems

Keep track of all the changes that happened (No lost work).

Many Developers can work on the same file at the same time.

The Version Control System will handle conflicts if possible, if

not, it will ask the developers to check it.

Popular Version Control Systems

Git (we will use this)

Mercurial

Subversion (SVN)

57 / 94

Git

58 / 94

Git

{Linus Torvaldos} developed Linux Kernel in 1991.

58 / 94

https://en.wikipedia.org/wiki/Linus_Torvalds

Git

{Linus Torvaldos} developed Linux Kernel in 1991.

Torvalds and others developed Git for management of Linux

Kernel source in 2005.

58 / 94

https://en.wikipedia.org/wiki/Linus_Torvalds

Git

{Linus Torvaldos} developed Linux Kernel in 1991.

Torvalds and others developed Git for management of Linux

Kernel source in 2005.

Git is Free and Open Source.

58 / 94

https://en.wikipedia.org/wiki/Linus_Torvalds

Git

{Linus Torvaldos} developed Linux Kernel in 1991.

Torvalds and others developed Git for management of Linux

Kernel source in 2005.

Git is Free and Open Source.

Great community support. You can always search in {Quora}

and {Stackoverflow} for problems you face.

58 / 94

https://en.wikipedia.org/wiki/Linus_Torvalds
https://www.quora.com/
https://stackoverflow.com/

Typical Git Cycle

For your first experience with git, refer to this workflow.

59 / 94

Typical Git Cycle

For your first experience with git, refer to this workflow.

1. [First Time Only] Create/Clone Repository to your disk, so you

have a local copy.

59 / 94

Typical Git Cycle

For your first experience with git, refer to this workflow.

1. [First Time Only] Create/Clone Repository to your disk, so you

have a local copy.

2. Make changes to your source (edit/add new file).

59 / 94

Typical Git Cycle

For your first experience with git, refer to this workflow.

1. [First Time Only] Create/Clone Repository to your disk, so you

have a local copy.

2. Make changes to your source (edit/add new file).

3. Add new files to your repository system. (You already

created the files physically, but you need to ask the git

repository to take control of your new file).

59 / 94

Typical Git Cycle

For your first experience with git, refer to this workflow.

1. [First Time Only] Create/Clone Repository to your disk, so you

have a local copy.

2. Make changes to your source (edit/add new file).

3. Add new files to your repository system. (You already

created the files physically, but you need to ask the git

repository to take control of your new file).

4. Commit your changes.

59 / 94

Typical Git Cycle

For your first experience with git, refer to this workflow.

1. [First Time Only] Create/Clone Repository to your disk, so you

have a local copy.

2. Make changes to your source (edit/add new file).

3. Add new files to your repository system. (You already

created the files physically, but you need to ask the git

repository to take control of your new file).

4. Commit your changes.

5. Get latest updates.

59 / 94

Typical Git Cycle

For your first experience with git, refer to this workflow.

1. [First Time Only] Create/Clone Repository to your disk, so you

have a local copy.

2. Make changes to your source (edit/add new file).

3. Add new files to your repository system. (You already

created the files physically, but you need to ask the git

repository to take control of your new file).

4. Commit your changes.

5. Get latest updates.

6. Resolve any conflict (if any).

59 / 94

Typical Git Cycle

For your first experience with git, refer to this workflow.

1. [First Time Only] Create/Clone Repository to your disk, so you

have a local copy.

2. Make changes to your source (edit/add new file).

3. Add new files to your repository system. (You already

created the files physically, but you need to ask the git

repository to take control of your new file).

4. Commit your changes.

5. Get latest updates.

6. Resolve any conflict (if any).

7. Push to the remote repository.

59 / 94

Create/Clone Repo

60 / 94

Create/Clone Repo

Case 1: New Repository.

$ git init

$ git remote add [name] [URL]

60 / 94

Create/Clone Repo

Case 1: New Repository.

$ git init

$ git remote add [name] [URL]

Case 2: Existing Repository.

$ git clone [URL]

60 / 94

Track files

61 / 94

Track files

It is recommended to add file by file, so apply this command to all

your application souce files, exclude any executable files or files

generated by the compiler.

$ git add [file name]

61 / 94

Track files

It is recommended to add file by file, so apply this command to all

your application souce files, exclude any executable files or files

generated by the compiler.

$ git add [file name]

Or, alternatively, do it once for all files (not recommended, but it is

up to you anyway).

$ git add *

61 / 94

Track files

It is recommended to add file by file, so apply this command to all

your application souce files, exclude any executable files or files

generated by the compiler.

$ git add [file name]

Or, alternatively, do it once for all files (not recommended, but it is

up to you anyway).

$ git add *

add here means you are asking the repository to watch your files

that already exists on disk.

61 / 94

Commit changes

62 / 94

Commit changes

After making changes, you need to your repository to confirm

these changes and documenting that change.

Write a message that you can understand (e.g briefly, indicate

your changes in the repository e.g "implementing square::area

function").

62 / 94

Commit changes

After making changes, you need to your repository to confirm

these changes and documenting that change.

Write a message that you can understand (e.g briefly, indicate

your changes in the repository e.g "implementing square::area

function").

$ git commit -a -m “I implemented square::area function”

62 / 94

Get latest source code updates

Before you publish your changes to the remote repository, update

your repository in case some member of your team has made

changes before you.

63 / 94

Get latest source code updates

Before you publish your changes to the remote repository, update

your repository in case some member of your team has made

changes before you.

$ git pull [remote name] [branch name]

63 / 94

Get latest source code updates

Before you publish your changes to the remote repository, update

your repository in case some member of your team has made

changes before you.

$ git pull [remote name] [branch name]

By default, remote name is origin and branch name is master,

unless you made a new branch you are working on with your

teammates.

63 / 94

Push source code changes

Publish your changes to your teammates on the remote repository:

64 / 94

Push source code changes

Publish your changes to your teammates on the remote repository:

$ git push [remote name] [branch name]

64 / 94

Push source code changes

Publish your changes to your teammates on the remote repository:

$ git push [remote name] [branch name]

Similarly, by default, remote name is origin and branch name is

master, unless you made a new branch your are working on with

your teammates.

64 / 94

Push source code changes

Publish your changes to your teammates on the remote repository:

$ git push [remote name] [branch name]

Similarly, by default, remote name is origin and branch name is

master, unless you made a new branch your are working on with

your teammates.

But what is Remote Repository, What do you mean

64 / 94

Local repository and remote repository

This photo is from {official git website}.

65 / 94

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Git on the cloud

Popular servers offering free remote repository hosting:

66 / 94

Git on the cloud

Popular servers offering free remote repository hosting:

 +

66 / 94

Git on the cloud

Popular servers offering free remote repository hosting:

 +

Github is offering you unlimited public and private

repositories, your teammates per repository are limited to 5

members (Otherwise, pay). Unless you are a student.

Everything is free!

66 / 94

Git on the cloud

Popular servers offering free remote repository hosting:

 +

Github is offering you unlimited public and private

repositories, your teammates per repository are limited to 5

members (Otherwise, pay). Unless you are a student.

Everything is free!

Bitbucket is offering you unlimited public and private

repository, but your teammates for all repositories are limited

to 5 members (Otherwise, pay).

66 / 94

What would you gain from keeping your

projects on the cloud?

Never lose your work

67 / 94

What would you gain from keeping your

projects on the cloud?

Never lose your work

67 / 94

Why Git on the cloud

68 / 94

Why Git on the cloud

If you messed with your project, you can review your repository

timeline and recover to a good state.

68 / 94

Why Git on the cloud

If you messed with your project, you can review your repository

timeline and recover to a good state.

It is always safe to keep your projects on the cloud in one place.

68 / 94

Why Git on the cloud

If you messed with your project, you can review your repository

timeline and recover to a good state.

It is always safe to keep your projects on the cloud in one place.

Build a portfolio: always an elegant reference to your projects

when you apply for a job. Include GitHub profile on your CV.

68 / 94

Very efficient way to demonstrate your

skills

Example

{UK VISA: Tier 1 Exceptional Talent}

https://technation.io/visa/?fbclid=IwAR1LwtzzMubZtGRHqV21nTaxeJZ6cIyUfUMJrLqxB-dYhZ9avDnzWcGVkH4

A Special Gift for Bio2020 Class

Amr Mahmoud
@Amr_A_A_Mahmoud

#ThanksGitHub for this gift from all Systems and
Biomedical Engineering students class 2020 at Cairo
University.

2 1:49 PM - Feb 8, 2018

See Amr Mahmoud's other Tweets

70 / 94

https://twitter.com/Amr_A_A_Mahmoud
https://twitter.com/Amr_A_A_Mahmoud
https://twitter.com/Amr_A_A_Mahmoud/status/961567568535408640
https://twitter.com/hashtag/ThanksGitHub?src=hash
https://twitter.com/intent/like?tweet_id=961567568535408640
https://twitter.com/Amr_A_A_Mahmoud/status/961567568535408640
https://support.twitter.com/articles/20175256
https://twitter.com/Amr_A_A_Mahmoud
https://twitter.com/AmrAhmed58/status/961567568535408640/photo/1

A Special Gift for Bio2021 Class

MouEhab
@_muhammedehab_

Sometimes the smallest things take up the most room in
your heart. #ThanksGitHub for supporting us with your dear
gift. We improved our studying process through GitHub
network.
-From all systems and biomedical engineering
students/class 2021/ at cairo university.

8 9:14 PM - Feb 14, 2019

S M Eh b' th T t

https://twitter.com/_muhammedehab_
https://twitter.com/_muhammedehab_
https://twitter.com/_muhammedehab_/status/1096125593006018560
https://twitter.com/hashtag/ThanksGitHub?src=hash
https://twitter.com/intent/like?tweet_id=1096125593006018560
https://twitter.com/_muhammedehab_/status/1096125593006018560
https://support.twitter.com/articles/20175256
https://twitter.com/_muhammedehab_
https://twitter.com/_muhammedehab_/status/1096125593006018560/photo/1

Git cheat sheets

{PDF}

72 / 94

https://education.github.com/git-cheat-sheet-education.pdf

GitHub Flow guide

{PDF}

73 / 94

https://enterprise.github.com/downloads/en/github-flow-cheatsheet.pdf

GitHub-Flavored Markdown guide

{PDF}

74 / 94

https://enterprise.github.com/downloads/en/markdown-cheatsheet.pdf

GitHub for Robotics comic book

explains the basics of using GitHub

{CBR}

75 / 94

https://discourse-cdn-sjc2.com/standard16/uploads/github/original/2X/1/175452fc42e0a4e34b0dd52d4c923ab47fd1619f.cbr

Special Gifts for Best Students

76 / 94

Special Gift from GitHub to SBME 2022

Class

77 / 94

Special Gift from GitHub to SBME 2022

Class

#ThanksGitHub

77 / 94

Installing Git on your machine

Issue the following command in your terminal.

$ sudo apt-get install git

78 / 94

Homework

Markdown resumes

Basic C++

To be announced soon

79 / 94

Linux Spaces

System-wise space vs. User space

When working on your projects, you are a USER.

When installing/upgrading system-wise application/library,

you are an ADMIN.

80 / 94

Jumping between folders (changing

directories)

$ cd (Relative Path|Absolute Path)

In terminal commands, with A|B, I mean "Either A or B".

81 / 94

Listing files in the current directory

(folder)

List files/directories inside the current

directory of the terminal

$ ls

List files/directories on from other directory

$ ls (Relative Path|Relative Path)

82 / 94

Change folder name or moving folder

name

$ mv (file|directory) (new file|new directory)

83 / 94

Copy file

$ cp (file) (target path)

84 / 94

Copy directory

$ cp -r (directory) (target path)

85 / 94

Create a new directory (folder)

$ mkdir (new folder name)

86 / 94

Removing a file

$ rm (file)

87 / 94

Remove a directory

$ rm -r (directory)

88 / 94

WARNING: Did you say rm?

HOW ABOUT sudo rm -rf /

DO NOT DO THIS!

$ sudo rm -rf /

89 / 94

WARNING: Did you say rm?

HOW ABOUT sudo rm -rf /

DO NOT DO THIS!

$ sudo rm -rf /

Updating & Upgrading your Linux

Upgrades are very important. Many hardware drivers issues are

being fixed through these updates. Also, security-wise, updates

guarantees your system to be safe against hackable vulnerabilities.

For example, Spectre and Meltdown vulnerabilities that exposed

all Operating Systems (including Widnows and Linux), for more

info.

$ sudo apt-get update

$ sudo apt-get upgrade

90 / 94

https://www.pcworld.com/article/3245606/security/intel-x86-cpu-kernel-bug-faq-how-it-affects-pc-mac.html

Installing packages from the apt store

$ sudo apt-get install (package name)

91 / 94

Installing local .deb packages

$ sudo dpkg -i (package path)

92 / 94

Interesting Appliactions

Category package name

Music & Video vlc, rhythm box (shipped with Ubuntu)

PDFs Okular, Foxit, PdfShuffler

Screenshots Shutter

C++ IDEs Qt Creator, Jet-brains CLion, VSCode

Python IDEs Pycharm, Anaconda (Spyder)

Web IDEs VSCode, Jet-brains WebStorm

93 / 94

Thank you

SBE201 Data Structures and Algorithms (Spring 2020) - By Asem Alaa

94 / 94

