
Section 4

Hough Transform and Harris Operator

Presentation by Asem Alaa

SBE404 Computer Vision (Spring 2020) - By Asem Alaa

1 / 33

Hough Transform

Proposed by Paul V.C Hough 1962

Got USA Patent

Originally for line detection

Extended to detect other shapes like, circle, ellipse etc.

2 / 33

https://patents.google.com/patent/US3069654

Hough Transform: Line Detection

(Cartesian Coordinates)

In image space line is defined by the slope and the y-intercept :m b

y mx b

3 / 33

Hough Transform: Line Detection

(Cartesian Coordinates)

In image space line is defined by the slope and the y-intercept :m b

y = mx + b

3 / 33

Hough Transform: Line Detection

(Cartesian Coordinates)

4 / 33

Hough Transform: Line Detection

(Cartesian Coordinates)

Each point proposes list of candidate lines

4 / 33

Hough Transform: Line Detection

(Cartesian Coordinates)

Each point proposes list of candidate lines

Overall, how to find the true lines?

4 / 33

Hough Transform: Line Detection

(Cartesian Coordinates)

Each point proposes list of candidate lines

Overall, how to find the true lines?

4 / 33

Hough Transform: Line Detection

(Cartesian Coordinates)

In image space line is defined by the slope and the y-intercept :m b

y = mx + b

5 / 33

Hough Transform: Line Detection (Polar

Coordinates)

6 / 33

Hough Transform: Line Detection (Polar

Coordinates)

Some lines cannot be be defined in Cartesian

6 / 33

Hough Transform: Line Detection (Polar

Coordinates)

Some lines cannot be be defined in Cartesian

So we have to move to polar coordinates.

6 / 33

Hough Transform: Line Detection (Polar

Coordinates)

Some lines cannot be be defined in Cartesian

So we have to move to polar coordinates.

In polar coordinates line is define by and ρ θ

6 / 33

Hough Transform: Line Detection (Polar

Coordinates)

Some lines cannot be be defined in Cartesian

So we have to move to polar coordinates.

In polar coordinates line is define by and

 is the norm distance of the line from origin.

 is the angle between the norm and the horizontal axis.

The equation of line in terms of and now is

and

ρ θ

ρ

θ x

ρ θ

y = x +
−cos(θ)

sin(θ)

ρ

sin(θ)

ρ = xcos(θ) + ysin(θ)

6 / 33

Hough Transform: Line Detection (Polar

Coordinates)

7 / 33

Hough Transform: Line Detection (Polar

Coordinates)

The Range of values of and ρ θ

8 / 33

Hough Transform: Line Detection (Polar

Coordinates)

The Range of values of and

: in polar coordinate takes value in range of -90 to 90

The maximum norm distance is given by diagonal distance

which is max

So has values in range from max to max

ρ θ

θ

ρ = √x2 + y2

ρ −ρ ρ

8 / 33

Hough Transform: Line Detection (Polar

Coordinates)

Algorithm

Basic Algorithm steps for Hough transform is :

Extract edges of the image (For example, using Canny)

1. initialize parameter space rs, thetas

2. Create accumulator array and initialize to zero

3. for each edge pixel

4. for each theta

5. calculate r = x cos(theta) + y sin(theta)

6. Increment accumulator at r, theta

7. Find Maximum values in accumulator (lines)

Extract related r, theta

9 / 33

Hough Transform: Line Detection (Polar

Coordinates)

Basic Implementation

At first import used libraries

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm

10 / 33

Hough Transform: Line Detection (Polar

Coordinates)

Basic Implementation

def hough_line(image):

 Ny = image.shape[0]

 Nx = image.shape[1]

 Maxdist = int(np.round(np.sqrt(Nx**2 + Ny ** 2)))

 thetas = np.deg2rad(np.arange(-90, 90))

 rs = np.linspace(-Maxdist, Maxdist, 2*Maxdist)

 accumulator = np.zeros((2 * Maxdist, len(thetas)))

 for y in range(Ny):

 for x in range(Nx):

 if image[y,x] > 0:

 for k in range(len(thetas)):

 r = x*np.cos(thetas[k]) + y * np.sin(thetas[k])

 accumulator[int(r) + Maxdist,k] += 1

 return accumulator, thetas, rs

11 / 33

Useful links

{Understanding Hough transform in python}

{OpenCV Hough Line Transform}

{Scikit-image Hough Line}

{OpenCV Hough Circle}

{Survey of Hough transform}

12 / 33

https://alyssaq.github.io/2014/understanding-hough-transform/
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html
http://scikit-image.org/docs/dev/auto_examples/edges/plot_line_hough_transform.html
https://docs.opencv.org/3.1.0/da/d53/tutorial_py_houghcircles.html
https://arxiv.org/pdf/1502.02160.pdf

Hough Transform: Line Detection (Polar

Coordinates)

{hough_transform.ipnyb}

13 / 33

https://github.com/sbme-tutorials/sbme-tutorials.github.io/blob/master/2020/cv/notebooks/hough_transform.ipynb

Corner Detection

Feature Detection

14 / 33

Corner Detection

Feature Detection

15 / 33

Corner Detection

Feature Detection

16 / 33

Corner Detection

Challenges

Patch (image) matching

17 / 33

Corner Detection

Challenges

Patch (image) matching

Distinctive features

17 / 33

Corner Detection

Challenges

Patch (image) matching

Distinctive features

Geometric transformations (translation, rotation, scale)

17 / 33

Corner Detection

Challenges

Patch (image) matching

Distinctive features

Geometric transformations (translation, rotation, scale)

Robust and efficient

17 / 33

Corner Detection

Challenges

Patch (image) matching

Distinctive features

Geometric transformations (translation, rotation, scale)

Robust and efficient

Photometric (brightness, exposure)

17 / 33

Corner Detection

Challenges

Patch (image) matching

Distinctive features

Geometric transformations (translation, rotation, scale)

Robust and efficient

Photometric (brightness, exposure)

Many preprocessing options can be applied

17 / 33

Corner Detection

Harris operator: corner detector

18 / 33

Corner Detection

Harris operator: corner detector

Compute the principal vectors of variation at location

p

P

λ1

λ2

λ1

λ2=0

λ1 λ2

19 / 33

Corner Detection: Harris operator

Step 1: image smoothing (optional)

20 / 33

Corner Detection: Harris operator

Step 1: image smoothing (optional)

 signal.convolve2d(img, gaussian_kernel(7,1.0) ,'same')

L(p, σ) = [I ∗ Gσ](p)

20 / 33

Corner Detection: Harris operator

Step 2: compute and

Many options to compute the and exist:

1. First order difference.

2. Prewitt kernel

3. Sobel kernel

Ix = signal.convolve2d(img , sobel_h ,'same')

Iy = signal.convolve2d(img , sobel_v ,'same')

Ix Iy

Ix Iy

21 / 33

Corner Detection: Harris operator

Step 3: construct the Hessian (Hesh'n) matrix

We will construct the Hessian matrix so we are able to compute the

principal vectors of variation.

M

22 / 33

Corner Detection: Harris operator

Step 3: construct the Hessian (Hesh'n) matrix

We will construct the Hessian matrix so we are able to compute the

principal vectors of variation.

M

M(p) = [
I 2

x IxIy

IxIy I 2
y

]

22 / 33

Corner Detection: Harris operator

Step 3: construct the Hessian (Hesh'n) matrix

We will construct the Hessian matrix so we are able to compute the

principal vectors of variation.

Ixx = np.multiply(Ix, Ix)

Iyy = np.multiply(Iy, Iy)

Ixy = np.multiply(Ix, Iy)

M

M(p) = [
I 2

x IxIy

IxIy I 2
y

]

22 / 33

Corner Detection: Harris operator

Step 3 (Alternative): construct the Hessian

(Hesh'n) matrix over a window

If we need more robust detection

M

23 / 33

Corner Detection: Harris operator

Step 3 (Alternative): construct the Hessian

(Hesh'n) matrix over a window

If we need more robust detection

Compute over a window (e.g)

M

M 3 × 3

23 / 33

Corner Detection: Harris operator

Step 3 (Alternative): construct the Hessian

(Hesh'n) matrix over a window

If we need more robust detection

Compute over a window (e.g)

Now can detect larger corner that lives inside a window of

pixels, instead of a single pixel.

M

M 3 × 3

23 / 33

Corner Detection: Harris operator

Step 3 (Alternative): construct the Hessian

(Hesh'n) matrix over a window

If we need more robust detection

Compute over a window (e.g)

Now can detect larger corner that lives inside a window of

pixels, instead of a single pixel.

M

M 3 × 3

M̂(p) = ∑
i,j

w(i, j) [
I 2

x IxIy

IxIy I 2
y

]

23 / 33

Corner Detection: Harris operator

Step 3 (Alternative): construct the Hessian

(Hesh'n) matrix over a window

If we need more robust detection

Compute over a window (e.g)

Now can detect larger corner that lives inside a window of

pixels, instead of a single pixel.

M

M 3 × 3

M̂(p) = ∑
i,j

w(i, j) [
I 2

x IxIy

IxIy I 2
y

]

M̂(p) = [
∑w(i, j)I 2

x (i, j) ∑w(i, j)IxIy(i, j)

∑w(i, j)IxIy(i, j) ∑w(i, j)I 2
y (i, j)

]

23 / 33

Corner Detection: Harris operator

Step 3 (Alternative): construct the Hessian

(Hesh'n) matrix over a windowM

M̂(p) = [
Î 2

x
^IxIy

^IxIy Î 2
y

]

24 / 33

Corner Detection: Harris operator

Step 3 (Alternative): construct the Hessian

(Hesh'n) matrix over a window

Ixx = np.multiply(Ix, Ix)

Iyy = np.multiply(Iy, Iy)

Ixy = np.multiply(Ix, Iy)

Ixx_hat = signal.convolve2d(Ixx , box_filter(3) ,'same')

Iyy_hat = signal.convolve2d(Iyy , box_filter(3) ,'same')

Ixy_hat = signal.convolve2d(Ixy , box_filter(3) ,'same')

M

M̂(p) = [
Î 2

x
^IxIy

^IxIy Î 2
y

]

24 / 33

Corner Detection: Harris operator

Step 4: compute and of

Hessian matrix

Eigen vectors and Eigen values

values (amount of variation)

vector (variation direction)

λ1 λ2 M̂

Corner Detection: Harris operator

Step 4: compute and of λ1 λ2 M̂

26 / 33

Corner Detection: Harris operator

Step 4: compute and of λ1 λ2 M̂

27 / 33

Corner Detection: Harris operator

Step 4: compute and of λ1 λ2 M̂

|H − λI| = 0

27 / 33

Corner Detection: Harris operator

Step 4: compute and of λ1 λ2 M̂

28 / 33

Corner Detection: Harris operator

Step 5: evaluate corners using as a measureR

29 / 33

Corner Detection: Harris operator

Step 5: evaluate corners using as a measureR

R = (λ1 × λ2) − k(λ1 + λ2)

29 / 33

Corner Detection: Harris operator

Step 4 (Alternative): evaluate directly

without and

Indirect solution

R

λ1 λ2

30 / 33

Corner Detection: Harris operator

Step 4 (Alternative): evaluate directly

without and

Indirect solution

R

λ1 λ2

det(M) = λ1 × λ2

30 / 33

Corner Detection: Harris operator

Step 4 (Alternative): evaluate directly

without and

Indirect solution

R

λ1 λ2

det(M) = λ1 × λ2

trace(M) = λ1 + λ2

30 / 33

Corner Detection: Harris operator

Step 4 (Alternative): evaluate directly

without and

Indirect solution

Instead of calculating

R

λ1 λ2

det(M) = λ1 × λ2

trace(M) = λ1 + λ2

λ1,λ2

30 / 33

Corner Detection: Harris operator

Step 4 (Alternative): evaluate directly

without and

Indirect solution

Instead of calculating

R

λ1 λ2

det(M) = λ1 × λ2

trace(M) = λ1 + λ2

λ1,λ2

R = det(M̂) − k ∗ trace(M̂)

30 / 33

Corner Detection: Harris operator

Step 4 (Alternative): evaluate directly

without and

Indirect solution

Instead of calculating

Trace is sum of diagonal elements

R

λ1 λ2

det(M) = λ1 × λ2

trace(M) = λ1 + λ2

λ1,λ2

R = det(M̂) − k ∗ trace(M̂)

30 / 33

Corner Detection: Harris operator

Step 4 (Alternative): evaluate directly

without and

K = 0.05

detM = np.multiply(Ixx_hat,Iyy_hat) - np.multiply(Ixy_hat,Ixy_hat)

trM = Ixx_hat + Iyy_hat

R = detM - K * trM

R

λ1 λ2

M̂(p) = [
Î 2
x

^IxIy

^IxIy Î 2
y

]

R = det(M̂) − k ∗ trace(M̂)

31 / 33

Corner Detection: Harris operator

Finally

corners = ???

Select large values of , using whatever thresholding heuristic in

mind.

Thresholding options:

constant absolute value

(e.g corners = np.abs(R) > 2.5)

R

32 / 33

Corner Detection: Harris operator

Finally

corners = ???

Select large values of , using whatever thresholding heuristic in

mind.

Thresholding options:

constant absolute value

(e.g corners = np.abs(R) > 2.5)

relative to maximum value

(e.g corners = np.abs(R) > 0.2 *

np.max(R))

R

32 / 33

Corner Detection: Harris operator

Finally

corners = ???

Select large values of , using whatever thresholding heuristic in

mind.

Thresholding options:

constant absolute value

(e.g corners = np.abs(R) > 2.5)

relative to maximum value

(e.g corners = np.abs(R) > 0.2 *

np.max(R))

relative to quantile value

(e.g corners = np.abs(R) >

np.quantile(np.abs(R),0.9))

R

Corner Detection: Harris operator

Results

33 / 33

Corner Detection: Harris operator

Results

33 / 33

