

Section 4

Hough Transform and Harris Operator

Presentation by Asem Alaa

Hough Transform

Proposed by Paul V.C Hough 1962

- Got USA Patent
- Originally for line detection
- Extended to detect other shapes like, circle, ellipse etc.

In image space line is defined by the slope *m* and the y-intercept *b* :

y mx b

In image space line is defined by the slope *m* and the y-intercept *b* :

y = mx + b

• Each point proposes list of candidate lines

- Each point proposes list of candidate lines
- Overall, how to find the true lines?

- Each point proposes list of candidate lines
- Overall, how to find the true lines?

In image space line is defined by the slope *m* and the y-intercept *b* :

y = mx + b

• Some lines cannot be be defined in Cartesian

- Some lines cannot be be defined in Cartesian
- So we have to move to polar coordinates.

- Some lines cannot be be defined in Cartesian
- So we have to move to polar coordinates.
- In polar coordinates line is define by ρ and θ

- Some lines cannot be be defined in Cartesian
- So we have to move to polar coordinates.
- In polar coordinates line is define by ρ and θ
- ρ is the norm distance of the line from origin.
- θ is the angle between the norm and the horizontal x axis.
- The equation of line in terms of ρ and θ now is

$$y = rac{-cos(heta)}{sin(heta)}x + rac{
ho}{sin(heta)}$$

and

$$ho = xcos(heta) + ysin(heta)$$

The Range of values of ρ and θ

The Range of values of ρ and θ

- θ : in polar coordinate takes value in range of -90 to 90
- The maximum norm distance is given by diagonal distance which is $ho \max = \sqrt{x^2 + y^2}$
- So ρ has values in range from $-\rho$ max to ρ max

Algorithm

Basic Algorithm steps for Hough transform is :

Extract edges of the image (For example, using Canny)

1. initialize parameter space rs, thetas

- 2. Create accumulator array and initialize to zero
- 3. for each edge pixel
- 4. for each theta
- 5. calculate r = x cos(theta) + y sin(theta)
- 6. Increment accumulator at r, theta
- 7. Find Maximum values in accumulator (lines)

Extract related r, theta

Basic Implementation

At first import used libraries

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm

Basic Implementation

```
def hough_line(image):
   Ny = image.shape[0]
   Nx = image.shape[1]
   Maxdist = int(np.round(np.sqrt(Nx**2 + Ny ** 2)))
    thetas = np.deg2rad(np.arange(-90, 90))
    rs = np.linspace(-Maxdist, Maxdist, 2*Maxdist)
    accumulator = np.zeros((2 * Maxdist, len(thetas)))
    for y in range(Ny):
        for x in range(Nx):
            if image[y,x] > 0:
                 for k in range(len(thetas)):
                    r = x*np.cos(thetas[k]) + y * np.sin(thetas[k])
                    accumulator[int(r) + Maxdist,k] += 1
    return accumulator, thetas, rs
```

Useful links

- {Understanding Hough transform in python}
- {OpenCV Hough Line Transform}
- {Scikit-image Hough Line}
- {OpenCV Hough Circle}
- {Survey of Hough transform}

{hough_transform.ipnyb}

Corner Detection Feature Detection

Corner Detection Feature Detection

Corner Detection Feature Detection

• Patch (image) matching

- Patch (image) matching
 - Distinctive features

- Patch (image) matching
 - Distinctive features
- Geometric transformations (translation, rotation, scale)

- Patch (image) matching
 - Distinctive features
- Geometric transformations (translation, rotation, scale)
 - Robust and efficient

- Patch (image) matching
 - Distinctive features
- Geometric transformations (translation, rotation, scale)
 - Robust and efficient
- Photometric (brightness, exposure)

- Patch (image) matching
 - Distinctive features
- Geometric transformations (translation, rotation, scale)
 - Robust and efficient
- Photometric (brightness, exposure)
 - Many preprocessing options can be applied

Corner Detection

Harris operator: corner detector

"flat" region: no change in all directions "edge": no change along the edge direction

"corner": significant change in all directions

Corner Detection

Harris operator: corner detector

Compute the **principal** vectors of variation at location **P**

λ1 λ2=0 λ1 λ2 🔌 λ2 λ1

Corner Detection: Harris operator Step 1: image smoothing (optional)

Corner Detection: Harris operator Step 1: image smoothing (optional)

 $L(p,\sigma) = [I * G_{\sigma}](p)$

signal.convolve2d(img, gaussian_kernel(7,1.0) ,'same')

Step 2: compute I_x and I_y

Many options to compute the I_x and I_y exist:

- 1. First order difference.
- 2. Prewitt kernel
- 3. Sobel kernel

Ix = signal.convolve2d(img , sobel_h ,'same')
Iy = signal.convolve2d(img , sobel_v ,'same')

Corner Detection: Harris operator Step 3: construct the Hessian (Hesh'n) matrix *M*

We will construct the Hessian matrix so we are able to compute the principal vectors of variation.

Corner Detection: Harris operator Step 3: construct the Hessian (Hesh'n) matrix *M*

We will construct the Hessian matrix so we are able to compute the principal vectors of variation.

$$M(p) = egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix}$$

Corner Detection: Harris operator Step 3: construct the Hessian (Hesh'n) matrix *M*

We will construct the Hessian matrix so we are able to compute the principal vectors of variation.

$$M(p) = egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix}$$

$I \times X =$	np.multiply(Ix,	Ix)
Iyy =	np.multiply(Iy,	Iy)

Ixy = np.multiply(Ix, Iy)

Step 3 (Alternative): construct the Hessian (Hesh'n) matrix *M* over a window

• If we need more robust detection

- If we need more robust detection
- Compute *M* over a window (e.g 3×3)

- If we need more robust detection
- Compute *M* over a window (e.g 3×3)
- Now can detect larger corner that lives inside a window of pixels, instead of a single pixel.

- If we need more robust detection
- Compute *M* over a window (e.g 3×3)
- Now can detect larger corner that lives inside a window of pixels, instead of a single pixel.

$$\hat{M}(p) = \sum_{i,j} w(i,j) egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix}$$

- If we need more robust detection
- Compute *M* over a window (e.g 3×3)
- Now can detect larger corner that lives inside a window of pixels, instead of a single pixel.

$$\hat{M}(p) = \sum_{i,j} w(i,j) egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix} \ \hat{M}(p) = egin{bmatrix} \sum w(i,j) I_x^2(i,j) & \sum w(i,j) I_x I_y(i,j) \ \sum w(i,j) I_x I_y(i,j) & \sum w(i,j) I_y^2(i,j) \end{bmatrix}$$

$$\hat{M}(p) = egin{bmatrix} \hat{I_x^2} & \hat{I_x I_y} \ \hat{I_x I_y} & \hat{I_y^2} \end{bmatrix}$$

Step 3 (Alternative): construct the Hessian (Hesh'n) matrix *M* over a window

$$\hat{M}(p) = egin{bmatrix} \hat{I_x^2} & \hat{I_x I_y} \ \hat{I_x I_y} & \hat{I_y^2} \end{bmatrix}$$

Ixx = np.multiply(Ix, Ix)
Iyy = np.multiply(Iy, Iy)
Ixy = np.multiply(Ix, Iy)
Ixx_hat = signal.convolve2d(Ixx , box_filter(3) ,'same')
Iyy_hat = signal.convolve2d(Iyy , box_filter(3) ,'same')
Ixy_hat = signal.convolve2d(Ixy , box_filter(3) ,'same')

- Hessian matrix $\mathbf{H}(p) = \begin{bmatrix} I_{xx}(p) & I_{xy}(p) \\ I_{xy}(p) & I_{yy}(p) \end{bmatrix}$
- Eigen vectors and Eigen values
 - values (amount of variation)
 - vector (variation direction)

Penn State Plotting Derivatives as 2D Points

 $|H - \lambda I| = 0$

λ2

Corner Detection: Harris operator Step 5: evaluate corners using *R* **as a measure**

Corner Detection: Harris operator Step 5: evaluate corners using *R* **as a measure**

 $R=(\lambda_1 imes\lambda_2)-k(\lambda_1+\lambda_2)$

Step 4 (Alternative): evaluate *R* **directly** without λ_1 and λ_2

Indirect solution

Step 4 (Alternative): evaluate *R* **directly** without λ_1 and λ_2

Indirect solution

 $det(M) = \lambda_1 imes \lambda_2$

Step 4 (Alternative): evaluate *R* **directly** without λ_1 and λ_2

Indirect solution

 $det(M) = \lambda_1 imes \lambda_2$ $trace(M) = \lambda_1 + \lambda_2$

Step 4 (Alternative): evaluate *R* **directly** without λ_1 and λ_2

Indirect solution

 $det(M) = \lambda_1 imes \lambda_2$ $trace(M) = \lambda_1 + \lambda_2$

Instead of calculating λ_1, λ_2

Step 4 (Alternative): evaluate *R* **directly** without λ_1 and λ_2

Indirect solution

 $det(M) = \lambda_1 imes \lambda_2$ $trace(M) = \lambda_1 + \lambda_2$

Instead of calculating λ_1, λ_2

• $R = det(\hat{M}) - k * trace(\hat{M})$

Step 4 (Alternative): evaluate *R* **directly** without λ_1 and λ_2

Indirect solution

 $det(M) = \lambda_1 imes \lambda_2$ $trace(M) = \lambda_1 + \lambda_2$

Instead of calculating λ_1, λ_2

- $R = det(\hat{M}) k * trace(\hat{M})$
- Trace is sum of diagonal elements

Step 4 (Alternative): evaluate *R* **directly** without λ_1 and λ_2

$$\hat{M}(p) = egin{bmatrix} \hat{I_x^2} & \hat{I_x I_y} \ \hat{I_x I_y} & \hat{I_y^2} \end{bmatrix} \ R = det(\hat{M}) - k * trace(\hat{M})$$

K = 0.05

detM = np.multiply(Ixx_hat,Iyy_hat) - np.multiply(Ixy_hat,Ixy_hat)
trM = Ixx_hat + Iyy_hat
R = detM - K * trM

corners = ???

Select large values of *R*, using whatever thresholding heuristic in mind.

- Thresholding options:
 - constant absolute value
 - o (e.g corners = np.abs(R) > 2.5)

corners = ???

Select large values of *R*, using whatever thresholding heuristic in mind.

- Thresholding options:
 - constant absolute value

o (e.g corners = np.abs(R) > 2.5)

• relative to maximum value

o (e.g corners = np.abs(R) > 0.2 *
np.max(R))

corners = ???

Select large values of *R*, using whatever thresholding heuristic in mind.

- Thresholding options:
 - constant absolute value

o (e.g corners = np.abs(R) > 2.5)

- relative to maximum value
 - o (e.g corners = np.abs(R) > 0.2 *
 np.max(R))
- relative to quantile value
 - o (e.g corners = np.abs(R) >
 np.quantile(np.abs(R),0.9))

