

Bird??

- > Classification
- > Segmentation
- > Edge detection
- > Eye detection, ...etc
- > Wing length estimation
- > ...etc.

Course evaluation

Grading System

-The grade will be mainly based on 4 small programming assignments (4 ~ biweekly) and one grand final project, midterm and final exam ('50' marks for semester work grade + '75' marks for final exam)

- Midterm exam 16/50

-Projects/Assignments 24/50

-Attendance 10/50

- -Project grading means to evaluate homeworks (Assignments), lab works, programming contents, presentations, and reports.
 - Exams cover everything and design problems that you might never thought of before

-All exams are open book

Attendance

- (20 %) of semester work grade is for attendance.

-Attendance is obligatory to all.

-**Three** unjustified absences are considered fail and dismissal of the course. Course nature is applied (use of knowledge to solve real problems in CV).

This slice is imported from Dr. Badawi's lectures

Required to review

Basic Statistics

Vector calculus

References

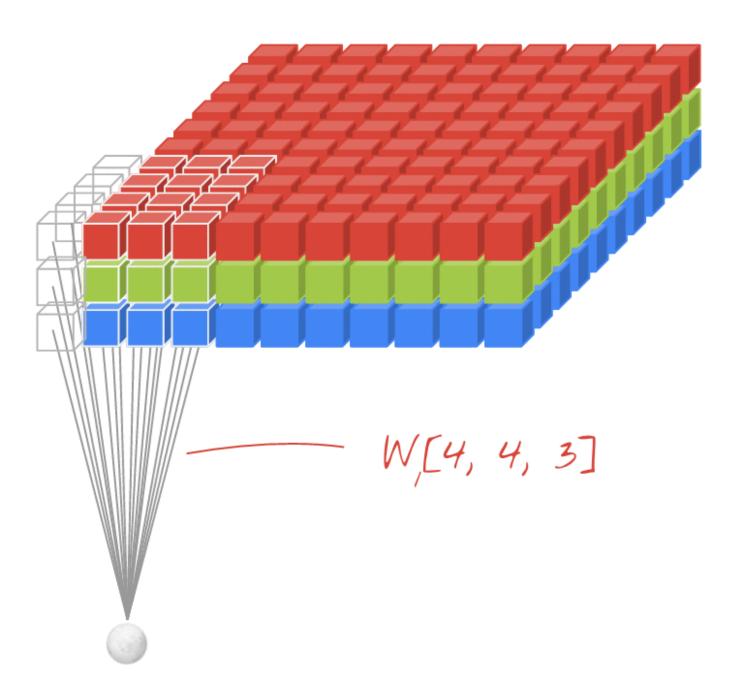
Jason Brownlee PhD https://machinelearningmastery.com/
http://vision.stanford.edu/teaching/cs131_fall1718/files/cs131-class-notes.pdf

	6					
5	3	2		1	2	3
7	5	4	*	3	2	1
4	2	4 3		4	5	6
1	1	1				

Output will be

5	16	28	20	3					
20	41	43	21	7			41	43	21
42	87	116	71	20	116		87		71
45	76	101	53	25	101	Or	76	101	53
41	72	106	63	30	106				63
19	33	52	30	19					30
4	9	15	11	6					
19	33	52	30	19	106		72 33		

M+N-1 M-N+1 M

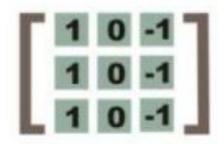

First: Flip the kernel around its horizontal and vertical axes or rotate be 180 degrees

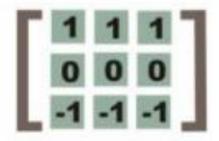
6	5	4
1	2	3
3	2	1

										6	5	4										
								=		1	2	3										
										3	2	1										
	5	6	1		5	6	1		5	6	1		5	6	1			5	6	1		
	5	3	2		5	3	2		5	3	2		5	3	2			5	3	2		
	7	5	4		7	5	4		7	5	4		7	5	4			7	5	4		
	4	2	3		4	2	3		4	2	3		4	2	3			4	2	3		
	1	1	1		1	1	1		1	1	1		1	1	1			1	1	1		
	5					16					28					20					3	

5	6	1		5	6	1		5	6	1	
5	3	2		5	3	2		5	3	2	
7	5	4		7	5	4		7	5	4	
4	2	3		4	2	3		4	2	3	
1	1	1		1	1	1		1	1	1	
	116										
					101						
									106		

0	0	0	0	0		0	0	0	0	0		0	0	0	0	0	
0	5	6	1	0		0	5	6	1	0		0	5	6	1	0	
0	5	3	2	0		0	5	3	2	0		0	5	3	2	0	
0	7	5	4	0		0	7	5	4	0		0	7	5	4	0	
0	4	2	3	0		0	4	2	3	0		0	4	2	3	0	
0	1	1	1	0		0	1	1	1	0		0	1	1	1	0	
0	0	0	0	0		0	0	0	0	0		0	0	0	0	0	
	41							43							21		




https://stats.stackexchange.com/questions/240926/how-are-convolutional-layers-connected-in-theano

Sobel masks

Prewitt masks

Roberts masks

-1	0	0	-1
0	1	1	0

Image gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

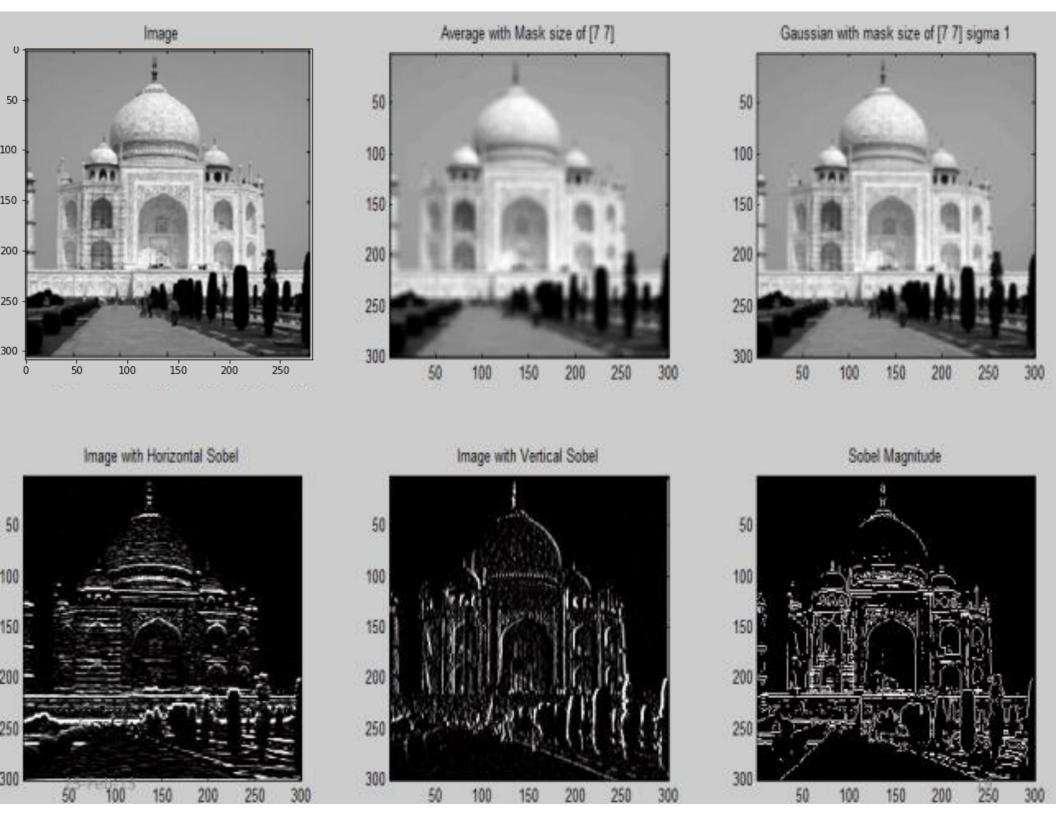
It points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \mathbf{0}, \frac{\partial f}{\partial y} \end{bmatrix}$$

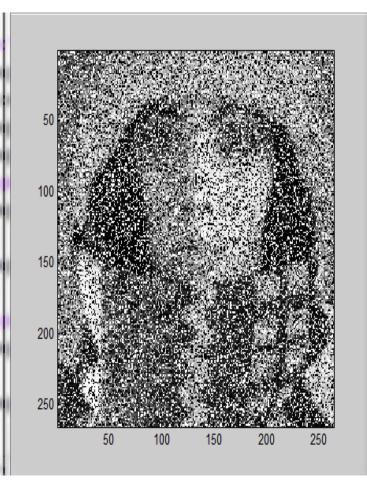
$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

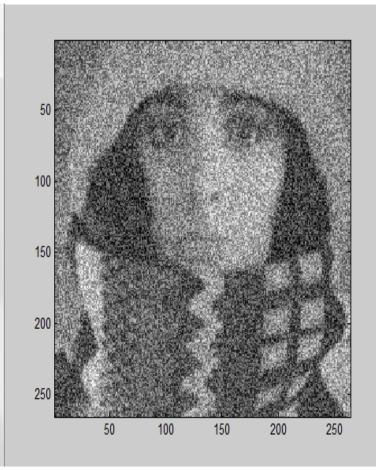
$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

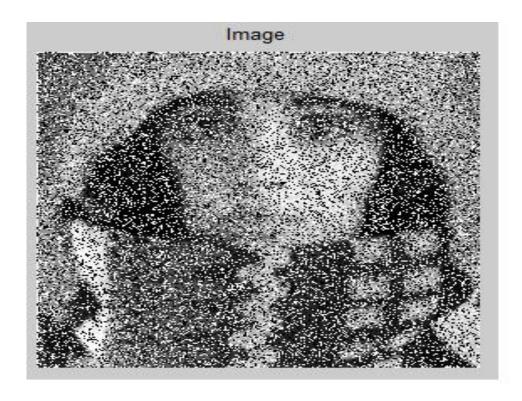

The gradient direction is given by:

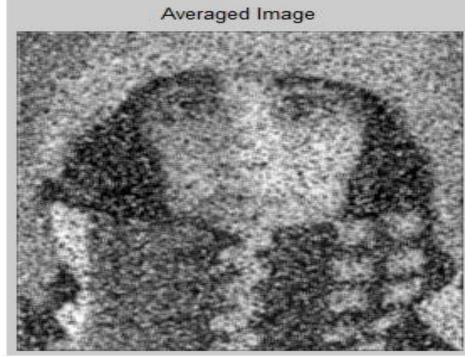
$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

how does this relate to the direction of the edge?


$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$


The edge strength is given by the gradient magnitude




Gaussian salt n Pepper Uniform

Let's proceed with some coding ...