

Introduction to Machine Learning

Support Vector Machine (SVM)

Inas A. Yassine

Systems and Biomedical Engineering Department, Faculty of Engineering - Cairo University *iyassine@eng.cu.edu.eg*

Learning Objectives

- Support Vector Machine (SVM)
 - Introduction
 - Properties of SVM
 - SVM Applications
- Artificial Neural Network (ANN)
 - Key Concepts
 - Perceptron Learning
 - Learning by Error Minimization

A Way to Choose a Model Class

- We want to get a low error rate on unseen data.
 - This is called "structural risk minimization"
- It would be really helpful if we could get a guarantee of the following form: Test error rate =< train error rate + f(N, h, p)

where N = size of training set,

h = measure of the model complexity,

p = the probability that this bound fails

We need p to allow for really unlucky test sets.

• Then we could choose the model complexity that minimizes the bound on the test error rate.

SVM Applications

- SVM has been used successfully in many real-world problems
 - text (and hypertext) categorization
 - image classification
 - bioinformatics (Protein classification, Cancer classification)
 - hand-written character recognition

Why Support Vector Machine (SVM)?

- Use a very big set of non-linear features that is taskindependent.
- Have a clever way to:
 - prevent overfitting

- Use a huge number of features without requiring nearly as much computation as seems to be necessary

A Hierarchy of Model Classes

- Some model classes can be arranged in a hierarchy of increasing complexity.
- How do we pick the best level in the hierarchy for modeling a given dataset?

h1 < h2 < h3 ...

0 0

w x + b < 0

0

0

0

0 0

•denotes +1

• denotes -1

y_{est}

Linear Classifiers

•denotes +1 •denotes -1

X

 $f(\mathbf{x}, \mathbf{w}, \mathbf{b}) = sign(\mathbf{w} \mathbf{x} + \mathbf{b})$

α

F

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Linear SVM Mathematically

What we know:

- $W \cdot x^+ + b = +1$
- $w \cdot x^{-} + b = -1$
- W. $(x^+ x^-) = 2$

M=Margin Width

Linear SVM Mathematically

Goal: 1) Correctly classify all training data •

> $wx_i + b \ge 1$ $wx_i + b \le 1$

 $y_i(wx_i + b) \ge 1$

2) Maximize the Margin

same as minimize $\Phi(w) = \frac{1}{2}w^t w$ Quadratic Optimization Problem and solve for w and b

 $if y_i = +1$

for all i

• Minimize
$$\Phi(w) = \frac{1}{2}w^t w$$

subject to $y_i(wx_i + b) \ge 1 \quad \forall i$

Dataset With Noise

- Hard Margin: So far we require all data points be classified correctly
 - No training error
- What if the training set is noisy?

OVERFITTING!

Soft Margin Classification

 Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples.

optimization criterion:

Minimize
$$\frac{1}{2}\mathbf{w}.\mathbf{w} + C\sum_{k=1}^{R}\varepsilon_{k}$$

Hard Margin v.s. Soft Margin

• The old formulation:

Find w and b such that $\Phi(w) = \frac{1}{2} w^{T}w$ is minimized and for all $\{(x_i, y_i)\}$ $y_i (w^{T}x_i + b) \ge 1$

The new formulation incorporating slack variables:

Find w and b such that $\Phi(w) = \frac{1}{2} w^{T}w + C\Sigma\xi_{i} \text{ is minimized and for all } \{(X_{i}, y_{i})\}$ $y_{i} (w^{T}X_{i} + b) \ge 1 - \xi_{i} \text{ and } \xi_{i} \ge 0 \text{ for all } i$

• Parameter C can be viewed as a way to control overfitting.

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:
- But what are we going to do if the dataset is just too hard?
- How about... mapping data to a higherdimensional space:

Non-linear SVMs: Feature Spaces

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Examples of Kernel Functions

The kernel function plays the role of the dot product in the feature space.

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- Polynomial of power p: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
- Gaussian (radial-basis function network): $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i \mathbf{x}_j\|^2}{2\sigma^2})$
- Sigmoid: $K(\mathbf{x}_i, \mathbf{x}_j)$: tanh $(B_0 \mathbf{x}_i^T \mathbf{x}_j + B_1)$

SVM parameters choice

- Choice of kernel
 - Gaussian or polynomial kernel is default
 - If ineffective, more elaborate kernels are needed
 - Domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Properties of SVM

- Flexibility in choosing a similarity function
- Sparseness of solution when dealing with large data sets
 - only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
 - complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution
- Feature Selection

Weakness of SVM

- It is sensitive to noise
 - A relatively small number of mislabeled examples can dramatically decrease the performance
- It only considers two classes
 - how to do multi-class classification with SVM?
 - Answer:
 - 1) with output similarity m, learn m SVM's
 - SVM 1 learns "Output==1" vs "Output != 1"
 - SVM 2 learns "Output==2" vs "Output != 2"
 - :
 - SVM m learns "Output==m" vs "Output != m"

2)To predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.

Thank You ...

Introduction to Machine Learning

Inas A. Yassine