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Learning Objectives

• Support Vector Machine (SVM) 
• Introduction 
• Properties of SVM 
• SVM Applications 

• Artificial Neural Network (ANN) 
• Key Concepts 
• Perceptron Learning 
• Learning by Error Minimization



A Way to Choose a Model Class

• We want to get a low error rate on unseen data. 
• This is called “structural risk minimization” 

• It would be really helpful if we could get a guarantee of the following form:  
Test error rate =< train error rate + f(N, h, p) 
where   N = size of training set, 
            h = measure of the model complexity, 
            p = the probability that this bound fails 

We need p to allow for really unlucky test sets. 
• Then we could choose the model complexity that minimizes the bound on 

the test error rate. 



SVM Applications

• SVM has been used successfully in many real-world problems 

   - text (and hypertext) categorization 

   - image classification 

   - bioinformatics (Protein classification, Cancer classification) 

   - hand-written character recognition



Why Support Vector Machine (SVM)?

• Use a very big set of non-linear features that is task-
independent. 

• Have a clever way to: 

    - prevent overfitting 

- Use a huge number of features without requiring nearly as 
much computation as seems to be necessary



A Hierarchy of Model Classes

• Some model classes can be arranged in a hierarchy of 
increasing complexity. 

• How do we pick the best level in the hierarchy for modeling a 
given dataset?
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Define the margin of 
a linear classifier as 
the width that the 
boundary could be 
increased by before 
hitting a datapoint.

 Linear Classifiers
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The maximum margin 
linear classifier is the 
linear classifier with 
the maximum margin; 
called an LSVM.

Support Vectors 
are those data 
points that the 
margin pushes 
up against



What we know: 
• w . x+ + b = +1  
• w . x- + b = -1  
• w . (x+-x-) = 2 
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Linear SVM Mathematically



■ Goal: 1) Correctly classify all training data 
                                                  if yi = +1 
                                                            if yi = -1 

                                                            for all i              
 2) Maximize the Margin  
                  same as minimize   
■ Quadratic Optimization Problem and solve for w and b 

■    Minimize  
       subject to                           
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Dataset With Noise  

• Hard Margin: So far we require 
all data points be classified 
correctly  

    -   No training error 
• What if the training set is 

noisy?

  denotes +1 

  denotes -1

OVERFITTING!



• Slack variables ξi can be added to allow misclassification of 
difficult or noisy examples.
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Hard Margin v.s. Soft Margin

• The old formulation: 

• The new formulation incorporating slack variables: 

• Parameter C can be viewed as a way to control overfitting.

      Find w and b such that 
     Φ(w) =½ wTw  is minimized and for all {(xi ,yi)} 
     yi (wTxi + b) ≥ 1

      Find w and b such that 
      Φ(w) =½ wTw + CΣξi     is minimized and for all {(xi ,yi)} 
      yi (wTxi + b) ≥ 1- ξi     and    ξi ≥ 0 for all i



Non-linear SVMs

• Datasets that are linearly separable with 
some noise work out great: 

• But what are we going to do if the 
dataset is just too hard?  

• How about… mapping data to a higher-
dimensional space:
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Non-linear SVMs: Feature Spaces

• General idea:   the original input space can always be mapped 
to some higher-dimensional feature space where the training 
set is separable:

Φ:  x → φ(x)



Examples of Kernel Functions

The kernel function plays the role of the dot product in the 
feature space. 

• Linear:    K(xi,xj)= xi 
Txj 

• Polynomial of power p:     K(xi,xj)= (1+ xi 
Txj)p 

• Gaussian (radial-basis function network): 

• Sigmoid: K(xi,xj):   tanh(β0xi 
Txj + β1)
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SVM parameters choice 

• Choice of kernel 
    - Gaussian or polynomial kernel is default 
    - If ineffective, more elaborate kernels are needed 
    - Domain experts can give assistance in formulating appropriate similarity 

measures 

• Choice of kernel parameters 
   - e.g. σ in Gaussian kernel 
   - σ is the distance between closest points with different classifications  
   - In the absence of reliable criteria, applications rely on the use of a 

validation set or cross-validation to set such parameters.  

• Optimization criterion – Hard margin v.s. Soft margin 
   - a lengthy series of experiments in which various parameters are tested 



Properties of SVM

• Flexibility in choosing a similarity function 
• Sparseness of solution when dealing with large data sets 
    - only support vectors are used to specify the separating hyperplane  
• Ability to handle large feature spaces 
   - complexity does not depend on the dimensionality of the feature space 
• Overfitting can be controlled by soft margin approach 
• Nice math property: a simple convex optimization problem which is 

guaranteed to converge to a single global solution 
• Feature Selection



Weakness of SVM

• It is sensitive to noise 
   - A relatively small number of mislabeled examples can dramatically decrease the 

performance 
• It only considers two classes 
   - how to do multi-class classification with SVM? 
    - Answer:  
    1) with output similarity m, learn m SVM’s 

• SVM 1 learns “Output==1” vs “Output != 1” 
• SVM 2 learns “Output==2” vs “Output != 2” 
• : 
• SVM m learns “Output==m” vs “Output != m” 

     2)To predict the output for a new input, just predict with each SVM and find out 
which one puts the prediction the furthest into the positive region.
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