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Learning Objectives

» Support Vector Machine (SVM)

* Introduction
 Properties of SVM
* SVM Applications

* Artificial Neural Network (ANN)
« Key Concepts
* Perceptron Learning
* Learning by Error Minimization
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A Way to Choose a Model Class
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* We want to get a low error rate on unseen data.
 This is called “structural risk minimization”
* It would be really helpful if we could get a guarantee of the following form:
Test error rate =< train error rate + f(N, h, p)
where N = size of training set,
h = measure of the model complexity,
p = the probability that this bound fails
We need p to allow for really unlucky test sets.

* Then we could choose the model complexity that minimizes the bound on
the test error rate.
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SVM Applications J
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* SVM has been used successfully in many real-world problems
- text (and hypertext) categorization
- image classification
- bioinformatics (Protein classification, Cancer classification)

- hand-written character recognition



Why Support Vector Machine (SVM)?

» Use a very big set of non-linear features that is task-
independent.

* Have a clever way to:
- prevent overfitting

- Use a huge number of features without requiring nearly as
much computation as seems to be necessary



A Hierarchy of Model Classes

* Some model classes can be arranged in a hierarchy of
increasing complexity.

* How do we pick the best level in the hierarchy for modeling a
given dataset?
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Linear Classifiers
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f(x,w,b) = sign(w x + b)

How would you
classify this data?
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Define the margin of
a linear classifier as
the width that the
boundary could be
increased by before
hitting a datapoint.




Maximum Margin ‘f J
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TRl 3 The maximum margin
Support Vectors_°| | : o linear classifier is the
are those data ‘ linear classifier with
points that the ~° °  the maximum margin;
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Linear SVM Mathematically

What we know:
e W.X*+b=+1
e W.X +b=-1
e W. (X*-X) =2
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Linear SVM Mathematically I
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= Goal: 1) Correctly classify all training data

wx, +b =1 ify, = +1

wx, +b =1 ify.=-1 } M=ﬁ
W

y.(wx, +b) =1 for all i

2) Maximize the Margin

. |
same as minimize d(w)=—w'w

Quadratic Optimization Problem and solve for w and b

I
= Minimize D(w) = ww

subject to y,(wx, +b) =1 Vi




Dataset With Noise
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Hard Margin: So far we require

5 y all data points be classified
LI correctly
. . : , - No training error
et e ok O - What if the training set is
L (s noisy?
ol % i ° denotes +1 OVERFITTI NG!
ity #N > denotes -1
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Soft Margin Classification ”
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 Slack variables & can be added to allow misclassification of
difficult or noisy examples.

optimization criterion:

W ] R
Minimize 5W-W+Czek

(@) k=1




Hard Margin v.s. Soft Margin

The old formulation:

y; (WTX; + b) 2 1

Find w and b such that
d(w) =2 wiw is minimized and for all {(X; ,V;)}

The new formulation incorporating slack variables:

Find w and b such that
D(w) =2 WTw + C2E,

is minimized and for all {(X; ,V;)}

vV, (WIx, +b)>21-§ and & =0 foralli

Parameter C can be viewed as a way to control overfitting.
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Non-linear SVMs
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Datasets that are linearly separable with
some noise work out great:

But what are we going to do if the
dataset is just too hard? f diss

How about... mapping data to a higher- ¥
dimensional space:




Non-linear SVMs: Feature Spaces

- General idea: the original input space can always be mapped
to some higher-dimensional feature space where the training

set is separable:




Examples of Kernel Functions

The kernel function plays the role of the dot product in the
feature space.

- Linear:  K(x;,x;)= x; Tx;

- Polynomial of power p:  K(x;,x;)= (1+ x; ;)P
Xi‘XJHZ
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- Gaussian (radial-basis function network): K(x;,x;)=exp(-

- Sigmoid: K(x;,X;): tanh(Byx; Tx; + B,)



SVM parameters choice
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* Choice of kernel
- Gaussian or polynomial kernel is default
- |f ineffective, more elaborate kernels are needed
- Domain experts can give assistance in formulating appropriate similarity
measures
* Choice of kernel parameters
- e.g. 0 in Gaussian kernel
- 0 is the distance between closest points with different classifications

- In the absence of reliable criteria, applications rely on the use of a
validation set or cross-validation to set such parameters.

» Optimization criterion - Hard margin v.s. Soft margin
- a lengthy series of experiments in which various parameters are tested



Properties of SVM
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* Flexibility in choosing a similarity function
» Sparseness of solution when dealing with large data sets
- only support vectors are used to specify the separating hyperplane
* Ability to handle large feature spaces
- complexity does not depend on the dimensionality of the feature space
 Overfitting can be controlled by soft margin approach

* Nice math property: a simple convex optimization problem which is
guaranteed to converge to a single global solution

 Feature Selection
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e |t is sensitive to noise

- A relatively small number of mislabeled examples can dramatically decrease the
performance

* It only considers two classes

- how to do multi-class classification with SVM?
- Answer:
1) with output similarity m, learn m SVM’s
* SVM 1 learns “Output==1" vs “Output != 1"
* SVM 2 learns “Output==2" vs “Output != 2"
 SVM m learns “Output==m” vs “Output !=m”
2)To predict the output for a new input, just predict with each SVM and find out
which one puts the prediction the furthest into the positive region.
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Thank You ...
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