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Linear regression

Given an input x we would like to
compute an output y

In linear regression we assume

that y and x are related with the

following equation:
Observed values
What we are

trying to predic;N / ;

Yy = WX+ ¢

where w is a parameter and ¢

represents measurement or other
noise
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Linear regression

) y = M + 8 Ciry ypivers®
* Our goal is to estimate w from a training
data of <x,y> pairs 7

« Optimization goal: minimize squared error
(least squares): 6

argmin , E(y, - |/|0(,)2

« Why least squares?

- minimizes squared distance between
measurements and predicted line

- has a nice probabilistic interpretation

- the math is pretty



Overfitting in Regression



Over-fitting %
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Root-Mean-Square (RMS) Error: Erms = V2E(w*)/N



Regularization

» Penalize Large Coefficients

ny<w)——2( 2w¢ (X' ) ——H w|



Regularization/ Over-Regularization %
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QOutliers
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« Rare/ Extreme values that may destroy the learning, which
could be:

* Error
* Important observation

* outliers if detected if greater than 3 standard deviation from
the mean



Time Online

GPA vs. Time Online
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Generative Vs Discriminative classifier ﬁ
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*Generative classifier, e.g., Naive Bayes:
—Assume some functional form for P(XIY), P(Y)
—Estimate parameters of P(XIY), P(Y) directly from training data
—Use Bayes rule to calculate P(YIX=x)
—This is ‘generative’ model

Indirect computation of P(YIX) through Bayes rule
*But, can generate a sample of the data,

Discriminative classifier, e.g., Logistic Regression:
—Assume some functional form for P(YIX)
—Estimate parameters of P(YIX) directly from training data

—This is the ‘discriminative’ model
Directly learn P(YIX)

*But cannot sample data, because P(X) is not available



Bayesian Decision Theory



Outline

e What is classification?

 Classification by Bayesian Classification
 Basic Concepts

 Bayes Rule

e More General Forms of Bayes Rule

e Discriminated Functions

e Bayesian Belief Networks



What is pattern recognition?

TYPICAL APPLICATIONS OF PR B
IMAGE PROCESSING EXAMPLE
® Sorting Fish: incoming fish are
sorted according to species
using optical sensing (sea
bass or salmon?)

® Problem Analysis:

m set up a camera and take
some sample images to
extract features

m Consider features such as
length, lightness, width,
number and shape of fins,
position.of mouth,.etc.




Pattern Classification System ﬁ
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* Preprocessing

* Segment (isolate) fishes from one another and from the
background

* Feature Extraction
* Reduce the data by measuring certain features

» Classification
* Divide the feature space into decision regions




Classification

* Initially use the length of the fish as a possible feature for
discrimination



Length Discriminator %
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salmon sea bass

counl?
22t

]

20F
IST
o
121 _
10F
S
O L
4L

2

nnnnnnnnnnnnnnnn o ad [t"l.(\"ll

-

(, U S T N W T T T T T
-

e

. Length is a poor discriminator



Feature Selection

The length is a poor feature alone!

Select the lightness as a possible feature



TYPICAL APPLICATIONS
Another Feature

i
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* Lightness is a better count
feature than length t salmaon i ca ba
because it reduces the = i
misclassification error. ”: i
« Can we combine features of |
in such a way that we di —
improve performance? B |
(Hint: correlation) o S — . - lightness




Threshold Decision Boundary and Cost %
Relationship

* Move decision boundary toward smaller values of lightness in
order to minimize the cost (reduce the number of sea bass that
are classified salmon!)

Task of decision theory




Feature Vector

» Adopt the lightness and add the width of the fish to the
feature vector

Fish X" = [x,, x,]

Al

Lightness Width




Width and Lightness Boundary %
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* Treat features as a N-tuple (two-
dimensional vector)

width

]
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e Create a scatter plot

salmon . sea bass

. ()
[

b
S

 Draw a line (regression)
separating the two classes "
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Features %

 We might add other features that are not highly correlated
with the ones we already have. Be sure not to reduce the
performance by adding “noisy features”

* |deally, you might think the best decision boundary is the one
that provides optimal performance on the training data (see
the following figure)



Generalization Problem %
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Decision Boundary Choice

 Our satisfaction is premature because the central aim of
designing a classifier is to correctly classify new (test) input

Issue of generalization!
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Generalization & Risk: Better Decision &
Boundary

e Why might a smoother
decision surface be a better
choice? (hint: Occam’s Razor). "

32‘:' R salmon . Sea bass
* PR investigates how to find i
T : 99 i = 20

such “optimal” decision N
surfaces and how to provide sk
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tools to make intelligent trade- s}
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Need for Probabilistic Reasoning
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Most everyday reasoning is based on uncertain evidence
and inferences.

Classical logic, which only allows conclusions to be
strictly true or strictly false, does not account for this
uncertainty or the need to weigh and combine conflicting

evidence.

Todays expert systems employed fairly ad hoc methods
for reasoning under uncertainty and for combining
evidence.



Probabilistic Decision Theory %
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Bayesian decision theory is a fundamental statistical approach to
the problem of pattern classification.
Using probabilistic approach to help making decision (e.g.,

classification) so as to minimize the risk (cost).
Assume all relevant probability distributions are known (later we will

learn how to estimate these from data).



Prior Probability

State of nature is prior information

o w denote the state of nature

Model as a random variable, w:

. W= w,: the event that the next fish is a sea bass

- category 1: sea bass; category 2: salmon

A priori probabilities:
. P(w,) = probability of category 1

- P(w,) = probab

- P(w,) +P(w,)="T1{el ust occur

Decision rule
Decide w, if P(w,) > P(w,); otherwise, decide w,

http://www.stat.vale.edu/Courses/1997-98/101/ranvar.htm




Class Conditional Probabilities %

Cairo ypives™
= A decision rule with only prior information always produces the
same result and ignores measurements.

« If P(w,) >> P( w,), we will be correct most of the time.

* Given a feature, x (lightness), which is a continuous random
variable, p(x|jw,) is the class-conditional probability density

function:

e p(x]w,) and p(x|w,) describe the difference in lightness between
populations of sea and salmon.



Conditional Probability %
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«» given the state of nature w.
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Let x be a continuous random variable.
p(x|w) is the probability density for x

\ W, p(lightness | salmon) ?

P(lightness | sea bass) ?

Y 10
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Preliminaries and Notations

0. E{w,,n,,[2),w }: a state of nature

P(w,):
X &
p(x|w,):

P(w, | x):

prior probability

feature vector

class-conditional
density

posterior probability




Bayes Formula: Combining A prioiri and %
Conditional Probabilities

- Suppose we know both P(w,) and p(x|w;), and we can measure x. How

does this influence our decision?

= The joint probability that of finding a pattern that is in category j and
that this pattern has a feature value of x is:

pP(wj,x)= P((Dj\xh’(x)= P(x‘wj ))(U)j:

 Rearranging terms, we arrive at Bayes formula.



Casual Formulation %
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*The prior probability reflects knowledge of the relative frequency of instances of a

class
*The likelihood 1s a measure of the probability that a measurement value occurs in a

class
*The evidence 1s a scaling term




Posterior Probability %
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= Bayes formula: \ For two categories:
P( )_ P(x‘wj)P((Dj/ 2
U)J‘x = ( ) plx) = Z/:(.r .uj)])(.uj).
p X 7=1
can be expressed in words as:
. likelihood x prior
posterior = ;

evidence

- By measuring x, we can convert the prior probability, P(w;), into a

Bayes Decision:
Choose w1 if P(wl|x) > P(w2|x); otherwise choose w2.

posterior probability, P(w;|x).

- Evidence can be viewed as a scale factor and is often ignored in
optimization applications (e.g., speech recognition).



Two Categories %
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Decide w, if P(w,|x) > P(w,|x); otherwise decide w,
Decide w, if p(x|jw,)P(w,) > p(x|w,)P(w,); otherwise decide w,

Special cases:
1. P(w,)=P(w,)

Decide w, if p(x|jw,) > p(x|w,); otherwise decide w,
2. p(x|w4)=p(x|w,)

Decide w, if P(w,) > P(w,); otherwise decide w,



Example b
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Special cases:

1. P(w,)=P(w,)
Rl Decide w, if p(x|w> p(x|w,); otherwise decide w,
e 2. p(x|w))=p(x|m,)

Decide w, if P(w,) > P(w,); otherwise decide w,

P(w,)=P(w,)

03r
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P(w,)=2/3
(=18

I’(-T‘w',)
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Bayes Decision Rule
Decide w, 1T p(x|w,)P(w,) > p(X|w,)P(w,); otherwise decide w,



Posterior Probability %
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* Two-class fish sorting problem (P(w1) = 2/3, P(w2) = 1/3):
* For every value of x, the posteriors sum to 1.0.

* At x=14, the probability it is in category w2 is 0.08, and for category w1 is 0.92.



Classification Error %
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= Decision rule:
> For an observation x, decide w, if P(w,]|x) > P(w,]

x); otherwise, decide w, p(wz‘x ) XEw,
P(error | x)
= Probability of error: P(wx) xEwm,

P(error ) = f P(error,x )dx = f P(error| x)p(x)dx

= The average probablllty of error is given by: ., .

Consider two categories: P(error|x) = mm[P((Dl‘x),P((Dz‘x)]
= |f for every x we ensure that P(error|x) is as small as
possible, then the integral is as small as possible.

Thus, Bayes decision rule for minimizes P(error).



Generalization of Two-Class Problem

= Generalization of the preceding ideas:

- Use of more than one feature (e.g., length and lightness)

- Use more than two states of nature (e.g., N-way classification)

- Allowing actions other than a decision to decide on the state of
nature (e.g., rejection: refusing to take an action when
alternatives are close or confidence is low)

- Introduce a loss of function which is more general than the
probability of error (e.g., errors are not equally costly)

- Let us replace the scalar x by the vector x in a d-dimensional
Euclidean space, Rd, called the feature space.



Decision Regions

The net effect is to divide the feature space into ¢ regions (one for each
class). We then have c decision regions separated by decision boundaries.

R, ={x|g,(x)>g,(x) Vj=i}
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Two-category example

Decision regions are
separated by decision
boundaries.




Figur
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FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R, is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Bayesian Decision Theory
(Classification)

The Normal Distribution



Basics of Probability

Discrete random variable (X) - Assume integer
Probability mass function (pmf): p(x) == P( X = x)

Cumulative distribution function (cdf): F° ( x) — P( = x) = E p(t)

f=—00

Continuous random variable (X)

Probability density function (pdf):  p(x)or f(x) nota probability

Cumulative distribution function (cdf): F ( x) = P( = x) = fK p(t )dl‘
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