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Linear regression

• Given an input x we would like to 
compute an output y 

• In linear regression we assume 
that y and x are related with the 
following equation:  

                 
                                 y = wx + ε 
     
    where w is a parameter and ε 

represents measurement or other 
noise  
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Linear regression
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• Our goal is to estimate w from a training 
data of <xi,yi> pairs 

•  Optimization goal: minimize squared error 
(least squares): 

• Why least squares? 

    - minimizes squared distance between 
measurements and predicted line 

     - has a nice probabilistic interpretation 

     - the math is pretty
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Overfitting in Regression



Over-fitting
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Root-Mean-Square (RMS) Error:



Regularization

• Penalize Large Coefficients
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Regularization/ Over-Regularization



Outliers

• Rare/  Extreme  values that may destroy the learning, which 
could be: 

• Error 
• Important observation 

• outliers if detected if greater than 3 standard deviation from 
the mean
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Generative  Vs Discriminative classifier

•Generative classifier, e.g., Naïve Bayes:
–Assume some functional form for P(X|Y), P(Y)
–Estimate parameters of P(X|Y), P(Y) directly from training data
–Use Bayes rule to calculate P(Y|X=x)
–This is ‘generative’ model

•Indirect computation of P(Y|X) through Bayes rule
•But, can generate a sample of the data,

 
•Discriminative classifier, e.g., Logistic Regression:

–Assume some functional form for P(Y|X)
–Estimate parameters of P(Y|X) directly from training data
–This is the ‘discriminative’ model
•Directly learn P(Y|X)
•But cannot sample data, because P(X) is not available

•



Bayesian Decision Theory



Outline

• What is classification? 
• Classification by Bayesian Classification 
• Basic Concepts 
• Bayes Rule 
• More General Forms of Bayes Rule 
• Discriminated Functions 
• Bayesian Belief Networks



TYPICAL APPLICATIONS OF PR
IMAGE PROCESSING EXAMPLE

• Sorting Fish: incoming fish are 
sorted according to species 
using optical sensing (sea 
bass or salmon?)

Feature Extraction

Segmentation

Sensing

• Problem Analysis: 
▪ set up a camera and take 

some sample images to 
extract features 
▪ Consider features such as 

length, lightness, width, 
number and shape of fins, 
position of mouth, etc.

What is pattern recognition?



Pattern Classification System

• Preprocessing 
• Segment (isolate) fishes from one another and from the 

background 
• Feature Extraction 

• Reduce the data by measuring certain features 
• Classification 

• Divide the feature space into decision regions



Classification

• Initially use the length of the fish as a possible feature for 
discrimination



Length Discriminator

• Length is a poor discriminator



Feature Selection

The length is a poor feature alone! 

Select the lightness as a possible feature



Another Feature 

• Lightness is a better 
feature than length 
because it reduces the 
misclassification error. 

• Can we combine features 
in such a way that we 
improve performance? 
(Hint: correlation)

TYPICAL APPLICATIONS



Threshold Decision Boundary and Cost 
Relationship
• Move decision boundary toward smaller values of lightness in 

order to minimize the cost (reduce the number of sea bass that 
are classified salmon!)  
 

Task of decision theory



Feature Vector

• Adopt the lightness and add the width of the fish to the 
feature vector 

Fish                         xT = [x1, x2]

Lightness Width



Width and Lightness Boundary

• Treat features as a N-tuple (two-
dimensional vector) 

• Create a scatter plot 

• Draw a line (regression) 
separating the two classes



Features

• We might add other features that are not highly correlated 
with the ones we already have. Be sure not to reduce the 
performance by adding “noisy features” 

• Ideally, you might think the best decision boundary is the one 
that provides optimal performance on the training data (see 
the following figure)



Generalization Problem

Is this a good decision boundary?



Decision Boundary Choice 

• Our satisfaction is premature because the central aim of 
designing a classifier is to correctly classify new (test) input   
 
            

Issue of generalization!



Generalization & Risk: Better Decision 
Boundary
• Why might a smoother 

decision surface be a better 
choice? (hint: Occam’s Razor). 

• PR investigates how to find 
such “optimal” decision 
surfaces and how to provide 
system designers with the 
tools to make intelligent trade-
offs.



Need for Probabilistic Reasoning

• Most everyday reasoning is based on uncertain evidence 
and inferences. 

• Classical logic, which only allows conclusions to be 
strictly true or strictly false, does not account for this 
uncertainty or the need to weigh and combine conflicting 
evidence. 

• Todays expert systems employed fairly ad hoc methods 
for reasoning under uncertainty and for combining 
evidence.



Probabilistic Decision Theory

• Bayesian decision theory is a fundamental statistical approach to 
the problem of pattern classification. 

• Using probabilistic approach to help making decision (e.g., 
classification) so as to minimize the risk (cost).  

• Assume all relevant probability distributions are known (later we will 
learn how to estimate these from data).



Prior Probability
■ State of nature is prior information 

○ ω denote the state of nature  
■ Model as a random variable, ω: 

▪ ω = ω1: the event that the next fish is a sea bass 
▪ category 1: sea bass; category 2: salmon 

• A priori probabilities: 
▪ P(ω1) = probability of category 1 
▪ P(ω2) = probability of category 2 
▪ P(ω1) + P( ω2) = 1 (either ω1 or ω2 must occur) 

• Decision rule 
    Decide ω1 if P(ω1) > P(ω2); otherwise, decide ω2

But we know there will be many mistakes ….

http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm 



Class Conditional Probabilities
■ A decision rule with only prior information always produces the 

same result and ignores measurements. 

■ If P(ω1) >> P( ω2), we will be correct most of the time.

• Given a feature, x (lightness), which is a continuous random 
variable, p(x|ω2)  is the class-conditional probability density 
function:

• p(x|ω1) and p(x|ω2) describe the difference in lightness between 
populations of sea and salmon.



Conditional Probability

p(lightness | salmon) ?

P(lightness | sea bass) ?

Let x be  a continuous random variable.  
p(x|w) is the probability density for x 
given the state of nature w.



Preliminaries and Notations

:},,,{ 21 ci ωωωω !∈ a state of nature

:)( iP ω prior probability 

:x feature vector 
:)|( ip ωx class-conditional 

density 
:)|( xiP ω posterior probability 



Bayes Formula: Combining A prioiri and 
Conditional Probabilities

■ Suppose we know both P(ωj) and p(x|ωj), and we can measure x. How 
does this influence our decision? 

■ The joint probability that of finding a pattern that is in category j and 
that this pattern has a feature value of x is:

( ) ( ) ( ) ( )jjjj PxpxpxP)x,(p ωω=ω=ω

• Rearranging terms, we arrive at Bayes formula.



Casual Formulation

•The prior probability reflects knowledge of the relative frequency of instances of a 
class 
•The likelihood is a measure of the probability that a measurement value occurs in a 
class 
•The evidence is a scaling term



Posterior Probability
■ Bayes formula: 

 can be expressed in words as: 

■ By measuring x, we can convert the prior probability, P(ωj), into a 
posterior probability, P(ωj|x). 

■ Evidence can be viewed as a scale factor and is often ignored in 
optimization applications (e.g., speech recognition).
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Bayes Decision: 
Choose w1 if P(w1|x) > P(w2|x); otherwise choose w2. 

For two categories:



Two Categories

Decide ω1 if  P(ω1|x)  >  P(ω2|x); otherwise decide ω2

Decide ω1 if  p(x|ω1)P(ω1) > p(x|ω2)P(ω2); otherwise decide ω2

Special cases: 
1.  P(ω1)=P(ω2)  
 Decide ω1 if  p(x|ω1) > p(x|ω2); otherwise decide ω2 
2. p(x|ω1)=p(x|ω2) 
 Decide ω1 if  P(ω1) > P(ω2); otherwise decide ω2



Example

R2 

P(ω1)=P(ω2)

R1 

Special cases:
1. P(ω1)=P(ω2) 

Decide ω1 if  p(x|ω> p(x|ω2); otherwise decide ω1

2. p(x|ω1)=p(x|ω2)
Decide ω1 if  P(ω1) > P(ω2); otherwise decide ω2



Example

R1R1
R2

R2 

P(ω1)=2/3 
P(ω2)=1/3

Decide ω1 if  p(x|ω1)P(ω1) > p(x|ω2)P(ω2); otherwise decide ω2

Bayes Decision Rule



Posterior Probability

• Two-class fish sorting problem (P(ω1) = 2/3, P(ω2) = 1/3):  

• For every value of x, the posteriors sum to 1.0. 

• At x=14, the probability it is in category ω2 is 0.08, and for category ω1 is 0.92.



Classification Error
■ Decision rule: 

➢ For an observation x, decide ω1 if P(ω1|x) > P(ω2|
x); otherwise, decide ω2 

■ Probability of error: 

■ The average probability of error is given by: 

■ If for every x we ensure that P(error|x) is as small as 
possible, then the integral is as small as possible. 
Thus, Bayes decision rule for minimizes P(error).
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Generalization of Two-Class Problem

■ Generalization of the preceding ideas: 
▪ Use of more than one feature (e.g., length and lightness) 
▪ Use more than two states of nature (e.g., N-way classification) 
▪ Allowing actions other than a decision to decide on the state of 

nature (e.g., rejection: refusing to take an action when 
alternatives are close or confidence is low) 

▪ Introduce a loss of function which is more general than the 
probability of error (e.g., errors are not equally costly) 

▪ Let us replace the scalar x by the vector x in a  d-dimensional 
Euclidean space, Rd, called the feature space.



Decision Regions

}  )()(|{ ijgg jii ≠∀>= xxxR

Two-category example

Decision regions are 
separated by decision 
boundaries.

The net effect is to divide the feature space into c regions (one for each 
class). We then have c decision regions separated by decision boundaries. 



Figure 2.6



Bayesian Decision Theory 
(Classification)

The Normal Distribution



Basics of Probability

Discrete random variable (X) － Assume integer

Continuous random variable (X)

Probability mass function (pmf): )()( xXPxp ==

Cumulative distribution function (cdf): ∑
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t
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Probability density function (pdf): )(or  )( xfxp

Cumulative distribution function (cdf): ∫ ∞−=≤=
x

dttpxXPxF )()()(

not a probability



Introduction to Machine Learning       

Thank You …  

Inas A. Yassine       


